• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.fvector函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.fvector函数的典型用法代码示例。如果您正苦于以下问题:Python fvector函数的具体用法?Python fvector怎么用?Python fvector使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fvector函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_vector_clf_curve

def test_vector_clf_curve():
    yt = T.fvector('yt')
    yp = T.fvector('yp')
    tps = tmetrics.classification._vector_clf_curve(yt, yp)
    f = theano.function([yt, yp], tps, allow_input_downcast=True)
    true, predicted = np.random.binomial(n=1, p=.5, size=10).astype('float32'), np.random.random(10).astype('float32')
    fps, tps, _ = f(true, predicted)
    s_fps, s_tps, s_ = sklearn.metrics.ranking._binary_clf_curve(true, predicted)
    np.set_printoptions(suppress=True)
    print 'true'
    print true
    print 'predicted'
    print predicted
    print 'fps'
    print fps
    print 'sklearn fps'
    print s_fps
    print 'tps'
    print tps
    print 'sklearn tps'
    print s_tps
    print 'threshold values'
    print _
    print 'sklearn threshold values'
    print s_
    assert np.allclose(fps, s_fps)
    assert np.allclose(tps, s_tps)
    assert np.allclose(_, s_)
开发者ID:jonathanstrong,项目名称:tmetrics,代码行数:28,代码来源:tmetrics_tests.py


示例2: test_cudnn_softmax_grad_opt

    def test_cudnn_softmax_grad_opt(self):
        # Verify that the SoftmaxGrad -> GpuDnnSoftmaxGrad optimization is
        # applied when cudnn is required
        y = T.fvector("y")
        f = theano.function([y], T.grad(T.nnet.softmax(y).mean(), y), mode=mode_with_gpu)
        sorted_f = f.maker.fgraph.toposort()
        assert len([i for i in sorted_f if isinstance(i.op, theano.sandbox.cuda.dnn.GpuDnnSoftmaxGrad)]) == 1
        assert len([i for i in sorted_f if isinstance(i.op, theano.tensor.nnet.SoftmaxGrad)]) == 0

        # Verify that the SoftmaxGrad -> GpuDnnSoftmaxGrad optimization is not
        # applied when cudnn is excluded or not available
        mode_wo_cudnn = mode_with_gpu.excluding("cudnn")
        y = T.fvector("y")
        f = theano.function([y], T.grad(T.nnet.softmax(y).mean(), y), mode=mode_wo_cudnn)
        sorted_f = f.maker.fgraph.toposort()
        assert len([i for i in sorted_f if isinstance(i.op, theano.sandbox.cuda.dnn.GpuDnnSoftmaxGrad)]) == 0
        assert len([i for i in sorted_f if isinstance(i.op, theano.tensor.nnet.SoftmaxGrad)]) == 1

        # Verify that the SoftmaxGrad -> GpuDnnSoftmaxGrad do not
        # crash with manual graph
        y = T.fvector("y")
        o = theano.tensor.nnet.SoftmaxGrad()(y, y * 2)
        f = theano.function([y], o, mode=mode_with_gpu)
        sorted_f = f.maker.fgraph.toposort()
        assert len([i for i in sorted_f if isinstance(i.op, theano.sandbox.cuda.dnn.GpuDnnSoftmaxGrad)]) == 1
        assert len([i for i in sorted_f if isinstance(i.op, theano.tensor.nnet.SoftmaxGrad)]) == 0
开发者ID:huamichaelchen,项目名称:Theano,代码行数:26,代码来源:test_dnn.py


示例3: setUp

    def setUp(self):
        self.x_true = np.random.uniform(low=0, high=1, size=5).astype('float32')
        self.x_false_list = [np.random.uniform(low=0, high=1, size=5).astype('float32') for i in range(10)]

        x_true_var = T.fvector()
        x_false_var_list = [T.fvector() for t in self.x_false_list]
        self.test = function(inputs=[x_true_var] + x_false_var_list, outputs=negative_sampling_loss(x_true_var, x_false_var_list))
开发者ID:vzhong,项目名称:pystacks,代码行数:7,代码来源:test_criteria.py


示例4: __init__

 def __init__(self, name, path, learning_rate=0.001):
     self.r_symbol = T.fvector('r')
     self.gamma_symbol = T.fscalar('gamma')
     self.action_symbol = T.fmatrix('action')
     self.y_symbol = T.fvector('y')
     super(ReinforcementModel, self).__init__(
         name, path, learning_rate=learning_rate)
开发者ID:Tinrry,项目名称:anna,代码行数:7,代码来源:__init__.py


示例5: test_0

def test_0():

    N = 16*1000*10*1

    if 1:
        aval = abs(numpy.random.randn(N).astype('float32'))+.1
        bval = numpy.random.randn(N).astype('float32')
        a = T.fvector()
        b = T.fvector()
    else:
        aval = abs(numpy.random.randn(N))+.1
        bval = numpy.random.randn(N)
        a = T.dvector()
        b = T.dvector()

    f = theano.function([a,b], T.pow(a,b), mode='LAZY')
    theano_opencl.elemwise.swap_impls=False
    g = theano.function([a,b], T.pow(a,b), mode='LAZY')

    print 'ocl   time', timeit.Timer(lambda: f(aval, bval)).repeat(3,3)

    print 'gcc   time', timeit.Timer(lambda: g(aval, bval)).repeat(3,3)

    print 'numpy time', timeit.Timer(lambda: aval**bval).repeat(3,3)

    assert ((f(aval, bval) - aval**bval)**2).sum() < 1.1
    assert ((g(aval, bval) - aval**bval)**2).sum() < 1.1
开发者ID:jaberg,项目名称:TheanoWS,代码行数:27,代码来源:test_elemwise.py


示例6: optimize

    def optimize(self, train_data, lam, fixed_length=3):
    
        i  = T.iscalar('i')
        lr = T.fscalar('lr');
        Xl = T.fvector('Xl')
        Xr = T.fvector('Xr')

        cost = self.ae.cost(Xl, Xr)  #+ lam * self.ae.penalty()
        grads = T.grad(cost, self.ae.params)
        update_vars = []

        for var, gvar in zip(self.ae.params, grads):
            if var.get_value().ndim == 1:
                update_vars.append((var, var - 0.1*lr*gvar))
            #elif var.get_value().ndim > 1:
            #    new_param = var - lr*gvar
            #    len_W = T.sqrt(T.sum(new_param**2, axis=0))
            #    desired_W = T.clip(len_W, 0., fixed_length)
            #    ratio = desired_W  / (len_W + 1e-7)
            #    new_param = new_param * ratio
            #    update_vars.append((var, new_param))
            else:
                update_vars.append((var, var - lr*gvar))

        opt = theano.function([i, lr], cost, updates=update_vars,
                givens={Xl: train_data[i,0], Xr: train_data[i,1]})#, allow_input_downcast=True)

        #get_grad = theano.function([], grads[3], givens={X:train_data[0]}, allow_input_downcast=True)
        #get_gradb = theano.function([], grads[-1], givens={X:train_data[0]}, allow_input_downcast=True)
        return opt#, get_grad, get_gradb
开发者ID:lebek,项目名称:reversible-raytracer,代码行数:30,代码来源:optimize.py


示例7: test_brier_score_loss_from_scikit_learn_example

def test_brier_score_loss_from_scikit_learn_example():
    """
    from sklearn docs...
    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import brier_score_loss
    >>> y_true = np.array([0, 1, 1, 0])
    >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3])
    >>> brier_score_loss(y_true, y_prob)  
    0.037...

    """
    y_true = T.fvector('y_true')
    y_predicted = T.fvector('y_predicted')
    brier_score = tmetrics.brier_score_loss(y_true, y_predicted)
    f = theano.function([y_true, y_predicted], brier_score)
    yt = np.array([0, 1, 1, 0], 'float32')
    yp = np.array([.1, .9, .8, .3], theano.config.floatX)
    refscore = sklearn.metrics.brier_score_loss(yt, yp)
    tol = .01
    score = f(yt, yp)
    assert (refscore - tol) < score < (refscore + tol)

    #also test the function is numpy/pandas compatible
    assert (refscore - tol) < tmetrics.brier_score_loss(yt, yp) < (refscore + tol)
开发者ID:jonathanstrong,项目名称:tmetrics,代码行数:26,代码来源:tmetrics_tests.py


示例8: __init__

    def __init__(self, input_layers, *args, **kwargs):
        super(RMSEObjective, self).__init__(input_layers, *args, **kwargs)
        self.input_systole = input_layers["systole:value"]
        self.input_diastole = input_layers["diastole:value"]

        self.target_vars["systole:value"] = T.fvector("systole_target_value")
        self.target_vars["diastole:value"] = T.fvector("diastole_target_value")
开发者ID:317070,项目名称:kaggle-heart,代码行数:7,代码来源:objectives.py


示例9: theanoVecVecMul

def theanoVecVecMul(In1,In2,opt):
    var1 = T.fvector('var1')
    var2 = T.fvector('var2')
    if opt=='M':
        var3 = T.fot(var1,var2)
    else:
        var3 = T.mul(var1,var2)
    DivVec = function([var1,var2],var3)
    return DivVec(In1,In2)
开发者ID:tpsjr7,项目名称:PythonDeSTIN,代码行数:9,代码来源:elementaryTheanoFunctions.py


示例10: __init__

    def __init__(self, num_emb, emb_dim, hidden_dim, output_dim,
                 degree=2, learning_rate=0.01, momentum=0.9,
                 trainable_embeddings=True,
                 labels_on_nonroot_nodes=False):
        assert emb_dim > 1 and hidden_dim > 1
        self.num_emb = num_emb
        self.emb_dim = emb_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.degree = degree
        self.learning_rate = learning_rate
        self.momentum = momentum

        self.params = []
        self.embeddings = theano.shared(self.init_matrix([self.num_emb, self.emb_dim]))
        if trainable_embeddings:
            self.params.append(self.embeddings)

        self.x = T.ivector(name='x')  # word indices
        self.tree = T.imatrix(name='tree')  # shape [None, self.degree]
        if labels_on_nonroot_nodes:
            self.y = T.fmatrix(name='y')  # output shape [None, self.output_dim]
            self.y_exists = T.fvector(name='y_exists')  # shape [None]
        else:
            self.y = T.fvector(name='y')  # output shape [self.output_dim]

        self.num_words = self.x.shape[0]  # total number of nodes (leaves + internal) in tree
        emb_x = self.embeddings[self.x]
        emb_x = emb_x * T.neq(self.x, -1).dimshuffle(0, 'x')  # zero-out non-existent embeddings

        self.tree_states = self.compute_tree(emb_x, self.tree)
        self.final_state = self.tree_states[-1]
        if labels_on_nonroot_nodes:
            self.output_fn = self.create_output_fn_multi()
            self.pred_y = self.output_fn(self.tree_states)
            self.loss = self.loss_fn_multi(self.y, self.pred_y, self.y_exists)
        else:
            self.output_fn = self.create_output_fn()
            self.pred_y = self.output_fn(self.final_state)
            self.loss = self.loss_fn(self.y, self.pred_y)

        updates = self.gradient_descent(self.loss)

        train_inputs = [self.x, self.tree, self.y]
        if labels_on_nonroot_nodes:
            train_inputs.append(self.y_exists)
        self._train = theano.function(train_inputs,
                                      [self.loss, self.pred_y],
                                      updates=updates)

        self._evaluate = theano.function([self.x, self.tree],
                                         self.final_state)

        self._predict = theano.function([self.x, self.tree],
                                        self.pred_y)
开发者ID:BinbinBian,项目名称:tree_rnn,代码行数:55,代码来源:tree_rnn.py


示例11: test_roc_auc_score

def test_roc_auc_score():
    true = np.random.binomial(n=1, p=.5, size=50).astype('float32')
    #true = np.array([0, 0, 1, 1]).astype('float32')
    predicted = np.random.random(size=50).astype('float32')
    #predicted = np.array([0.1, 0.4, 0.35, 0.8]).astype('float32')
    yt = T.fvector('y_true')
    yp = T.fvector('y_predicted')
    roc_auc_score_expr = tmetrics.classification.roc_auc_score(yt, yp)
    refscore = sklearn.metrics.roc_auc_score(true, predicted)
    print 'refscore'
    print refscore
    f = theano.function([yt, yp], roc_auc_score_expr)
    score = f(true, predicted)
    print 'score'
    print score
    try:
        assert np.allclose(refscore, score)
    except AssertionError:
        fps, tps, thresholds = tmetrics.classification._binary_clf_curve(yt, yp)
        fpr, tpr, _thresh = tmetrics.classification.roc_curve(yt, yp)
        f = theano.function([yt, yp], [fps, tps, thresholds, fpr, tpr, _thresh, roc_auc_score_expr])
        result = f(true, predicted)
        print '** tmetrics **'
        print 'fps'
        print result[0]
        print 'tps'
        print result[1]
        print 'thresholds'
        print result[2]
        print 'fpr'
        print result[3]
        print 'tpr'
        print result[4]
        print '_thresh'
        print result[5]
        print 'roc score'
        print result[6]

        print '** refscore **'
        curve = sklearn.metrics.ranking._binary_clf_curve(true, predicted)
        print 'fpr'
        print curve[0]
        print 'tpr'
        print curve[1]
        print 'thresholds'
        print curve[2]
        trapz = np.trapz(curve[1], curve[0])
        print 'trapz'
        print trapz
        print 'auc'
        print sklearn.metrics.ranking.auc(curve[0], curve[1])
        print 'roc_curve'
        print sklearn.metrics.roc_curve(true, predicted)
        raise
开发者ID:jonathanstrong,项目名称:tmetrics,代码行数:54,代码来源:tmetrics_tests.py


示例12: main

def main():

    #loading in data set
    dataset_for_error = '/vega/stats/users/sl3368/Data_LC/NormData/LC_stim_15.mat'
    stimuli = load_class_data_batch(dataset_for_error)
    stim = stimuli[0]
    data = theano.shared( stim, borrow=True)
    print 'Number of rows: '
    print stim.shape[0]

    #setting variable for error 
    init = numpy.float64(0.0)
    mean_error = shared(init)

    #writing theano functions for computing mean square error for one lag 
    
    prediction = T.fvector('predict') # 60 row vector representing time t

    real = T.fvector('real') #row representing time t+1 

    cost = T.mean( (real - prediction) ** 2)

    #function for updating mean error
    batch_error = theano.function([prediction,real],cost,updates=[(mean_error, mean_error + cost)])


    increment = stim.shape[0]/100
    #iterating over batch and computing the error
    for index in range(stim.shape[0]-1):
        if index % increment == 0:
		print str(index/increment)+'% done...'
	recent = batch_error(stim[index],stim[index+1])

    #m_e_avg = mean_error / 9000000

    #printing result
    print 'Total error: '
    print mean_error.get_value()

    print 'Finding padding amount...'
    num_zero = float(0.0)
    #calculating zeros amount
    for index in range(stim.shape[0]):
        is_zero = True
        for i in range(60):
            if stim[index][i] != 0:
               is_zero = False
   
        if is_zero:
            num_zero = num_zero + 1

    print 'Percent Zero: '+str(float(num_zero/(increment * 100))) 
开发者ID:sl3368,项目名称:DeepBirdBrain,代码行数:52,代码来源:one_lag_baseline.py


示例13: test_softmax_grad

    def test_softmax_grad(self):
        def cmp(n, m, f, f_gpu):
            data = numpy.arange(n * m, dtype="float32").reshape(n, m)
            gdata = numpy.asarray(data)[:, :, None, None]

            out = f(data)
            gout = numpy.asarray(f_gpu(gdata))[:, :, 0, 0]
            utt.assert_allclose(out, gout)

        x = T.matrix("x", "float32")
        x_gpu = T.tensor4("x_gpu", "float32")
        f_z = T.nnet.softmax_op
        f_gpu = dnn.GpuDnnSoftmax("accurate", "channel")

        # Verify the grad operation
        dims = (2, 3, 4, 5)
        gdata = numpy.arange(numpy.product(dims), dtype="float32").reshape(dims)
        T.verify_grad(f_gpu, [gdata], rng=numpy.random, mode=mode_with_gpu)

        # Verify that the CPU and GPU implementations return the same results
        # up to a tolerance.

        self._test_softmax(x, x_gpu, f_z, f_gpu, cmp)

        self._test_softmax(x, x, f_z, f_z, self._cmp)

        # Verify that the SoftmaxGrad -> Gpu[Dnn]SoftmaxGrad
        # optimization is applied when cudnn is required
        y = T.fvector("y")
        f = theano.function([y], T.grad(T.nnet.softmax(y).mean(), y), mode=mode_with_gpu)
        sorted_f = f.maker.fgraph.toposort()
        assert len([i for i in sorted_f if isinstance(i.op, self.gpu_grad_op)]) == 1
        assert len([i for i in sorted_f if isinstance(i.op, theano.tensor.nnet.SoftmaxGrad)]) == 0

        # Verify that the SoftmaxGrad -> Gpu[Dnn]SoftmaxGrad
        # optimization is not applied when cudnn is excluded or not
        # available
        mode_wo_cudnn = mode_with_gpu.excluding("cudnn")
        y = T.fvector("y")
        f = theano.function([y], T.grad(T.nnet.softmax(y).mean(), y), mode=mode_wo_cudnn)
        sorted_f = f.maker.fgraph.toposort()
        assert len([i for i in sorted_f if isinstance(i.op, self.gpu_grad_op)]) == 0
        assert len([i for i in sorted_f if isinstance(i.op, theano.tensor.nnet.SoftmaxGrad)]) == 1

        # Verify that the SoftmaxGrad -> GpuDnnSoftmaxGrad do not
        # crash with manual graph
        y = T.fvector("y")
        o = theano.tensor.nnet.SoftmaxGrad()(y, y * 2)
        f = theano.function([y], o, mode=mode_with_gpu)
        sorted_f = f.maker.fgraph.toposort()
        assert len([i for i in sorted_f if isinstance(i.op, self.gpu_grad_op)]) == 1
        assert len([i for i in sorted_f if isinstance(i.op, theano.tensor.nnet.SoftmaxGrad)]) == 0
开发者ID:huamichaelchen,项目名称:Theano,代码行数:52,代码来源:test_dnn.py


示例14: get_div_function

    def get_div_function(self):
        tind = T.ivector('ind')
        if self.NMF_updates == 'beta':
            self.div = theano.function(inputs=[tind],
                                       outputs=costs.beta_div(self.X_buff[tind[1]:tind[2], ],
                                                              self.W[tind[0]].T,
                                                              self.H[tind[3]:tind[4], ],
                                                              self.beta),
                                       name="div",
                                       allow_input_downcast=True)
        if self.NMF_updates == 'groupNMF':
            tcomp = T.ivector('comp')
            tlambda = T.fvector('lambda')
            tSc = T.ivector('Sc')
            tCs = T.ivector('Cs')
            tparams = [tind, tcomp, tlambda, tSc, tCs]
            cost, beta_div, cls_dist, ses_dist = costs.group_div(self.X_buff[tind[1]:tind[2], ],
                                                                 self.W,
                                                                 self.H[tind[3]:tind[4], ],
                                                                 self.beta,
                                                                 tparams)

            self.div = theano.function(inputs=[tind, tcomp, tlambda, tSc, tCs],
                                       outputs=[cost,
                                                beta_div,
                                                cls_dist,
                                                ses_dist],
                                       name="div",
                                       allow_input_downcast=True,
                                       on_unused_input='ignore')

        if self.NMF_updates == 'noiseNMF':
            tcomp = T.ivector('comp')
            tlambda = T.fvector('lambda')
            tSc = T.ivector('Sc')
            tparams = [tind, tcomp, tlambda, tSc]
            cost, beta_div, cls_dist, ses_dist = costs.noise_div(self.X_buff[tind[1]:tind[2], ],
                                                                 self.W,
                                                                 self.Wn,
                                                                 self.H[tind[3]:tind[4], ],
                                                                 self.beta,
                                                                 tparams)

            self.div = theano.function(inputs=[tind, tcomp, tlambda, tSc],
                                       outputs=[cost,
                                                beta_div,
                                                cls_dist,
                                                ses_dist],
                                       name="div",
                                       allow_input_downcast=True,
                                       on_unused_input='ignore')
开发者ID:mikimaus78,项目名称:groupNMF,代码行数:51,代码来源:beta_nmf_class.py


示例15: test_1D_roc_auc_scores

def test_1D_roc_auc_scores():
    yt = T.fvector('yt')
    yp = T.fvector('yp')
    y = np.array([0, 0, 1, 1]).astype('float32')
    scores = np.array([0.1, 0.4, 0.35, 0.8]).astype('float32')
    ref_fpr, ref_tpr, ref_thresh = sklearn.metrics.roc_curve(y, scores)
    roc_auc_scores = tmetrics.classification.roc_auc_scores(yt, yp)
    fpr, tpr, thresh = tmetrics.classification.roc_curves(yt, yp)
    f = theano.function([yt, yp], [fpr, tpr, thresh, roc_auc_scores])
    score_fpr, score_tpr, score_thresh, score_auc = f(y ,scores)
    assert np.allclose(ref_fpr, score_fpr)
    assert np.allclose(ref_tpr, score_tpr)
    assert np.allclose(ref_thresh, score_thresh)
    assert np.allclose(sklearn.metrics.roc_auc_score(y, scores), score_auc)
开发者ID:jonathanstrong,项目名称:tmetrics,代码行数:14,代码来源:tmetrics_tests.py


示例16: test_precisison_recall_curves_vector

def test_precisison_recall_curves_vector(n_iter=1):
    yt = T.fvector('yt')
    yp = T.fvector('yp')
    p_expr, r_expr, thresh_expr = tmetrics.classification.precision_recall_curves(yt, yp)
    f = theano.function([yt, yp], [p_expr, r_expr, thresh_expr])
    for iterator in xrange(n_iter):
        y = np.random.binomial(n=1, p=.5, size=20).astype('float32')
        scores = np.random.random(20).astype('float32')
        ref_precision, ref_recall, ref_thresh = sklearn.metrics.precision_recall_curve(y, scores)
        precision, recall, thresh = f(y ,scores)
        #assert np.allclose(ref_precision, precision)
        #assert np.allclose(ref_recall, recall)
        #assert np.allclose(ref_thresh, thresh)
        try:
            assert np.allclose(sklearn.metrics.auc(ref_recall, ref_precision), sklearn.metrics.auc(recall, precision))
        except:
            print 'n_iter: {}'.format(n_iter)
            print 'y'
            print y
            print 'scores'
            print scores
            print 'ref precision'
            print ref_precision
            print ref_precision.shape
            #print np.r_[precision[1:], 1] 
            #print np.allclose(ref_precision, np.r_[precision[1:], 1] )
            print sklearn.metrics.auc(ref_recall, ref_precision)
            print sklearn.metrics.auc(recall, precision)
            print
            print 'ref recall'
            print ref_recall
            print ref_recall.shape
            print
            print 'ref thresh'
            print ref_thresh
            print ref_thresh.shape
            print
            print 'score precision'
            print precision
            print precision.shape
            print
            print 'score recall'
            print recall
            print recall.shape
            print 
            print 'score threshold'
            print thresh
            print thresh.shape
            raise
开发者ID:jonathanstrong,项目名称:tmetrics,代码行数:49,代码来源:tmetrics_tests.py


示例17: test_elemwise4

def test_elemwise4():
    """ Test that two vectors can be broadcast to form an outer product (by performing rank-1 matrix update"""

    shape = (3,4)
    a = tcn.shared_constructor(theano._asarray(numpy.random.rand(*shape), dtype='float32'), 'a')
    b = tensor.fvector()
    c = tensor.fvector()
    f = pfunc([b,c], [], updates=[(a, (a+b.dimshuffle('x', 0)*c.dimshuffle(0, 'x')))], mode=mode_with_gpu)
    has_elemwise = False
    for i, node in enumerate(f.maker.env.toposort()):
        print >> sys.stdout, i, node
        has_elemwise = has_elemwise or isinstance(node.op, tensor.Elemwise)
    assert not has_elemwise
    #let debugmode catch errors
    f(theano._asarray(numpy.random.rand(4), dtype='float32'), theano._asarray(numpy.random.rand(3), dtype='float32'))
开发者ID:delallea,项目名称:Theano,代码行数:15,代码来源:test_basic_ops.py


示例18: test_multinomial_dtypes

def test_multinomial_dtypes():
    p = tensor.dmatrix()
    u = tensor.dvector()
    m = multinomial.MultinomialFromUniform('auto')(p, u)
    assert m.dtype == 'float64', m.dtype

    p = tensor.fmatrix()
    u = tensor.fvector()
    m = multinomial.MultinomialFromUniform('auto')(p, u)
    assert m.dtype == 'float32', m.dtype

    p = tensor.fmatrix()
    u = tensor.fvector()
    m = multinomial.MultinomialFromUniform('float64')(p, u)
    assert m.dtype == 'float64', m.dtype
开发者ID:Jackwangyang,项目名称:Theano,代码行数:15,代码来源:test_multinomial.py


示例19: test_hammming_loss

def test_hammming_loss():
    true = np.random.binomial(n=1, p=.5, size=10).astype('float32')
    predicted = np.round(np.random.random(10))
    refscore = hamming(true, predicted)
    yt = T.fvector('yt')
    yp = T.fvector('yp')
    f = theano.function([yt, yp], tmetrics.classification.hamming_loss(yt, yp), allow_input_downcast=True)
    score = f(true, predicted)
    print 'true'
    print true
    print 'predicted'
    print predicted
    print 'refscore {}'.format(refscore)
    print 'score {}'.format(score)
    assert np.allclose(refscore, score)
开发者ID:jonathanstrong,项目名称:tmetrics,代码行数:15,代码来源:tmetrics_tests.py


示例20: find_sigma

def find_sigma(X_shared, sigma_shared, N, perplexity, sigma_iters,
               metric, verbose=0):
    """Binary search on sigma for a given perplexity."""
    X = T.fmatrix('X')
    sigma = T.fvector('sigma')

    target = np.log(perplexity)

    P = T.maximum(p_Xp_given_X_var(X, sigma, metric), epsilon)

    entropy = -T.sum(P*T.log(P), axis=1)

    # Setting update for binary search interval
    sigmin_shared = theano.shared(np.full(N, np.sqrt(epsilon), dtype=floath))
    sigmax_shared = theano.shared(np.full(N, np.inf, dtype=floath))

    sigmin = T.fvector('sigmin')
    sigmax = T.fvector('sigmax')

    upmin = T.switch(T.lt(entropy, target), sigma, sigmin)
    upmax = T.switch(T.gt(entropy, target), sigma, sigmax)

    givens = {X: X_shared, sigma: sigma_shared, sigmin: sigmin_shared,
              sigmax: sigmax_shared}
    updates = [(sigmin_shared, upmin), (sigmax_shared, upmax)]

    update_intervals = theano.function([], entropy, givens=givens,
                                       updates=updates)

    # Setting update for sigma according to search interval
    upsigma = T.switch(T.isinf(sigmax), sigma*2, (sigmin + sigmax)/2.)

    givens = {sigma: sigma_shared, sigmin: sigmin_shared,
              sigmax: sigmax_shared}
    updates = [(sigma_shared, upsigma)]

    update_sigma = theano.function([], sigma, givens=givens, updates=updates)

    for i in range(sigma_iters):
        e = update_intervals()
        update_sigma()
        if verbose:
            print('Iteration: {0}.'.format(i+1))
            print('Perplexities in [{0:.4f}, {1:.4f}].'.format(np.exp(e.min()),
                  np.exp(e.max())))

    if np.any(np.isnan(np.exp(e))):
        raise Exception('Invalid sigmas. The perplexity is probably too low.')
开发者ID:paulorauber,项目名称:thesne,代码行数:48,代码来源:core.py



注:本文中的theano.tensor.fvector函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.ge函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.ftensor4函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap