• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.dscalars函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.dscalars函数的典型用法代码示例。如果您正苦于以下问题:Python dscalars函数的具体用法?Python dscalars怎么用?Python dscalars使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dscalars函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_scalars

    def test_scalars(self):
        
        try:
            import theano.tensor as T
            from theano import function            
        except:
            return
        
        # Set up variables and function
        vals = [1, 2, 3, 4, 5]
        f = lambda a, b, c, d, e : a + (b * c) - d ** e

        # Set up our objects
        Cs = [ch.Ch(v) for v in vals]
        C_result = f(*Cs)

        # Set up Theano's equivalents
        Ts = T.dscalars('T1', 'T2', 'T3', 'T4', 'T5')
        TF = f(*Ts)        
        T_result = function(Ts, TF)        

        # Make sure values and derivatives are equal
        self.assertEqual(C_result.r, T_result(*vals))
        for k in range(len(vals)):
            theano_derivative = function(Ts, T.grad(TF, Ts[k]))(*vals)
            #print C_result.dr_wrt(Cs[k])
            our_derivative = C_result.dr_wrt(Cs[k])[0,0]
            #print theano_derivative, our_derivative
            self.assertEqual(theano_derivative, our_derivative)
开发者ID:MPI-IS,项目名称:chumpy,代码行数:29,代码来源:test_ch.py


示例2: sample_gradient

def sample_gradient():
    print "微分"
    x, y = T.dscalars("x", "y")
    z = (x+2*y)**2
    # dz/dx
    gx = T.grad(z, x)
    fgx = theano.function([x,y], gx)
    print fgx(1.0, 1.0)
    # dz/dy
    gy = T.grad(z, y)
    fgy = theano.function([x,y], gy)
    print fgy(1.0, 1.0)
    # d{sigmoid(x)}/dx
    x = T.dscalar("x")
    sig = sigmoid(x)
    dsig = T.grad(sig, x)
    f = theano.function([x], dsig)
    print f(0.0)
    print f(1.0)
    # d{sigmoid(<x,w>)}/dx
    w = T.dscalar("w")
    sig = sigmoid(T.dot(x,w))
    dsig = T.grad(sig, x)
    f = theano.function([x, w], dsig)
    print f(1.0, 2.0)
    print f(3.0, 4.0)
    print
开发者ID:norikinishida,项目名称:snippets,代码行数:27,代码来源:sample.py


示例3: test_examples_6

    def test_examples_6(self):

        from theano import Param
        x, y = T.dscalars('x', 'y')
        z = x + y
        f = function([x, Param(y, default=1)], z)
        assert f(33)    == array(34.0)
        assert f(33, 2) == array(35.0)
开发者ID:AI-Cdrone,项目名称:Theano,代码行数:8,代码来源:test_tutorial.py


示例4: defaultValue

def defaultValue(*arg):
    x, y, w = T.dscalars('x', 'y', 'w')
    z = x + y + w
    f = th.function([x, th.In(y, value=1), th.In(w, value=2, name='wName')], z)
    if len(arg) == 3:
        print(f(arg[0], wName = arg[1], y = arg[2]))
    elif len(arg) == 2:
        print(f(arg[0], arg[1]))
    else:
        print(f(arg[0]))
开发者ID:thbeucher,项目名称:DQN,代码行数:10,代码来源:theanoL.py


示例5: test_examples_7

 def test_examples_7(self):
     from theano import Param
     x, y, w = T.dscalars('x', 'y', 'w')
     z = (x + y) * w
     f = function([x, Param(y, default=1), Param(w, default=2, name='w_by_name')], z)
     assert f(33)                   == array(68.0)
     assert f(33, 2)                == array(70.0)
     assert f(33, 0, 1)             == array(33.0)
     assert f(33, w_by_name=1)      == array(34.0)
     assert f(33, w_by_name=1, y=0) == array(33.0)
开发者ID:AI-Cdrone,项目名称:Theano,代码行数:10,代码来源:test_tutorial.py


示例6: test_default_values

 def test_default_values(self):
     # Check that default values are restored
     # when an exception occurs in interactive mode.
     a, b = T.dscalars('a', 'b')
     c = a + b
     func = theano.function([theano.In(a, name='first'), theano.In(b, value=1, name='second')], c)
     x = func(first=1)
     try:
         func(second=2)
     except TypeError:
         assert(func(first=1) == x)
开发者ID:athiwatp,项目名称:Theano,代码行数:11,代码来源:test_function_module.py


示例7: test_deepcopy_trust_input

    def test_deepcopy_trust_input(self):
        a = T.dscalar()  # the a is for 'anonymous' (un-named).
        x, s = T.dscalars('xs')

        f = function([x, In(a, value=1.0, name='a'),
                      In(s, value=0.0, update=s + a * x, mutable=True)],
                     s + a * x)
        f.trust_input = True
        try:
            g = copy.deepcopy(f)
        except NotImplementedError as e:
            if e[0].startswith('DebugMode is not picklable'):
                return
            else:
                raise
        self.assertTrue(f.trust_input is g.trust_input)
        f(np.asarray(2.))
        self.assertRaises((ValueError, AttributeError), f, 2.)
        g(np.asarray(2.))
        self.assertRaises((ValueError, AttributeError), g, 2.)
开发者ID:EugenePY,项目名称:Theano,代码行数:20,代码来源:test_function_module.py


示例8: test

def test():
    # multiple inputs, multiple outputs
    a, b = T.dmatrices('a', 'b')
    diff = a - b
    abs_diff = T.abs_(diff)
    sqr_diff = diff ** 2
    f = function([a, b], [diff, abs_diff, sqr_diff])
    h, i, j = f([[0, 1], [2, 3]], [[4, 5], [6, 7]])

    # default value for function arguments
    a, b = T.dscalars('a', 'b')
    z = a + b
    f = function([a, Param(b, default=1)], z)
    print f(1, b=2)
    print f(1)
    print f(1, 2)

    # shared variable
    state = shared(0)
    inc = T.lscalar('inc') # state is int64 by default
    accumulator = function([inc], state, updates=[(state, state + inc)])
    print accumulator(300)
    print state.get_value()
开发者ID:ZiangYan,项目名称:learn-new-tools,代码行数:23,代码来源:test.py


示例9: brachistochrone_functional

def brachistochrone_functional():
    # define all symbols
    lx, ly = T.dscalars('lx', 'ly')
    fseq = T.dvector('fseq')
    N = fseq.size + 1
    delta_x = lx / N
    iseq = T.arange(N-1)

    # functional term
    functional_ithterm = lambda i: T.switch(T.eq(i, 0),
                                            T.sqrt(0.5*(delta_x**2+(fseq[0]-ly)**2)/(ly-0.5*(fseq[0]+ly))),
                                            T.sqrt(0.5*(delta_x**2+(fseq[i]-fseq[i-1])**2)/(ly-0.5*(fseq[i]+fseq[i-1])))
                                            )

    # defining the functions
    functional_parts, _ = theano.map(fn=lambda k: functional_ithterm(k), sequences=[iseq])
    functional = functional_parts.sum() + T.sqrt(0.5*(delta_x**2+(0-fseq[N-2])**2)/(ly-0.5*(0+fseq[N-2])))
    gfunc = T.grad(functional, fseq)

    # compile the functions
    time_fcn = theano.function(inputs=[fseq, lx, ly], outputs=functional)
    grad_time_fcn = theano.function(inputs=[fseq, lx, ly], outputs=gfunc)

    return time_fcn, grad_time_fcn
开发者ID:stephenhky,项目名称:BrachistochroneWithTheano,代码行数:24,代码来源:BrachistochroneModel.py


示例10: f

'''
Created on Jun 1, 2015

@author: xujian
'''

import theano
from theano import Param
import theano.tensor as T
from samba.dcerpc.atsvc import Third

a,b,c = T.dscalars('a','b','c')
z=(a+b)*c
f=theano.function([a,Param(b,default=0),Param(c,default=1,name="third_var")],z)
print f(1)
print f(1,2)
print f(1,third_var=2)
开发者ID:xujian-lele,项目名称:python-study,代码行数:17,代码来源:default-values-in-function.py


示例11: abs

'''
Executing multiple functions
'''
a,b = T.dmatrices('a','b')
diff = a-b
abs_diff = abs(a-b)
diff_sq = diff**2
mult = function([a,b],[diff,abs_diff,diff_sq])
print mult([[0,1],[1,2]],[[-1,2],[5,7]])
#print pp(diff)
#print pp(abs_diff)

'''
Setting a default value for an argument
So, if arg not give, take default value; else take the given value
'''
x, y = T.dscalars("x","y")
z = x+y
add = function([x,Param(y,default=1)],z)
print add(33.0)
print add(2,6)

'''
Setting names to parameters
'''
x,y,w = T.dscalars("x","y","w")
z = (x+y)*w
add_par = function([x,Param(y,default=1),Param(w,default=2,name="debalu")],z)
print add_par(33)
print add_par(33,6,debalu=5)
开发者ID:Dawny33,项目名称:Data-Mining-and-ML,代码行数:30,代码来源:logistic_and_stuff.py


示例12: defaultValue

def defaultValue():
    x, y, z = T.dscalars('x', 'y', 'z')
    return function([x, In(y, value=1), In(z, value=2, name='namedZ')], (x + y) * z)
开发者ID:fyabc,项目名称:TheanoProject,代码行数:3,代码来源:examples.py


示例13: tuto

def tuto():
    
    print "\nLogistic Function 1"
    print "---------------------"
    x = T.dmatrix('x')
    s = 1 / (1 + T.exp(-x))
    logistic = theano.function([x], s)
    print logistic([[0, 1], [-1, -2]])

    print "\nLogistic Function 2"
    print "---------------------"
    s2 = (1 + T.tanh(x / 2)) / 2
    logistic2 = theano.function([x], s2)
    print logistic2([[0, 1], [-1, -2]])
    
    print "\nComputing More than one Thing at the Same Time"
    print "------------------------------------------------"
    a, b = T.dmatrices('a', 'b')
    diff = a - b
    abs_diff = abs(diff)
    diff_squared = diff**2
    f = theano.function([a, b], [diff, abs_diff, diff_squared])
    print f([[1, 1], [1, 1]], [[0, 1], [2, 3]]) 
    
    print "\nSetting a Default Value for an Argument"
    print "---------------------------------------"
    x, y = T.dscalars('x', 'y')
    z = x + y
    f = function([x, In(y, value=1)], z)
    print f(33)
    print f(33, 2)
    
    print "A Real Example: Logistic Regression"
    print "-----------------------------------"
    rng = numpy.random
    N = 400                                   # training sample size
    feats = 784                               # number of input variables
    
    # generate a dataset: D = (input_values, target_class)
    D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
    training_steps = 10000
    
    # Declare Theano symbolic variables
    x = T.dmatrix("x")
    y = T.dvector("y")
    
    # initialize the weight vector w randomly
    #
    # this and the following bias variable b
    # are shared so they keep their values
    # between training iterations (updates)
    w = theano.shared(rng.randn(feats), name="w")
    
    # initialize the bias term
    b = theano.shared(0., name="b")
    
    print("Initial model:")
    print(w.get_value())
    print(b.get_value())
    
    # Construct Theano expression graph
    p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))   # Probability that target = 1
    prediction = p_1 > 0.5                    # The prediction thresholded
    xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
    cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
    gw, gb = T.grad(cost, [w, b])             # Compute the gradient of the cost
                                              # w.r.t weight vector w and
                                              # bias term b
                                              # (we shall return to this in a
                                              # following section of this tutorial)
    
    # Compile
    train = theano.function(
              inputs=[x,y],
              outputs=[prediction, xent],
              updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
    predict = theano.function(inputs=[x], outputs=prediction)
    
    # Train
    for i in range(training_steps):
        pred, err = train(D[0], D[1])
    
    print("Final model:")
    print(w.get_value())
    print(b.get_value())
    print("target values for D:")
    print(D[1])
    print("prediction on D:")
    print(predict(D[0]))
开发者ID:mducoffe,项目名称:TD_Deep_Learning,代码行数:89,代码来源:tuto_theano.py


示例14: test_1_examples_param_default

def test_1_examples_param_default():
    x, y = T.dscalars('x', 'y')
    f = theano.function([x, theano.Param(y, default=1)], x + y)
    assert f(1, 2) == 3
    assert f(1) == 2
开发者ID:consciousnesss,项目名称:learn_theano,代码行数:5,代码来源:test_1_examples.py


示例15: dscalars

from time import clock
from numpy import ones

from theano import Mode
from theano import function

from theano.tensor import dscalars
from theano.tensor import dmatrices

from theano.tensor import lt
from theano.tensor import mean

from theano.tensor import switch
from theano.ifelse import ifelse

a_dscalar, b_dscalar = dscalars('a', 'b')
x_dmatrix, y_dmatrix = dmatrices('x', 'y')

z_switch_dmatrix = switch(lt(a_dscalar, b_dscalar), mean(x_dmatrix), mean(y_dmatrix))
z_ifelse_dmatrix = ifelse(lt(a_dscalar, b_dscalar), mean(x_dmatrix), mean(y_dmatrix))

# Both ops build a condition over symbolic variables. IfElse takes a boolean condition and two variables as inputs.
# Switch evaluates both output variables, ifelse is lazy and only evaluates one variable with respect to the condition.
# Unless linker='vm' or linker='cvm' are used, ifelse will compute both variables and take the same computation time as switch.
f_switch = function([a_dscalar, b_dscalar, x_dmatrix, y_dmatrix], z_switch_dmatrix, mode=Mode(linker='vm'))
f_ifelse = function([a_dscalar, b_dscalar, x_dmatrix, y_dmatrix], z_ifelse_dmatrix, mode=Mode(linker='vm'))

var1 = 0.
var2 = 1.
big_mat1 = ones((10000, 1000))
big_mat2 = ones((10000, 1000))
开发者ID:SnakeHunt2012,项目名称:alchemy-stove,代码行数:31,代码来源:switch_vs_ifelse.py


示例16: abs

Computing multiple things
"""
# shorthand definition of vars
a, b = T.dmatrices('a', 'b')
diff = a - b
# NOTE: we do not need to use a, b again - diff is already a formed expression
abs_diff = abs(diff)
diff_squared = diff ** 2
f = theano.function([a, b], [diff, abs_diff, diff_squared])
print(f([[1, 1], [1, 1],], [[0, 1], [2, 3]])) # has 3 outputs

"""
Default values
"""
from theano import In
x, y = T.dscalars('x', 'y')
z = x + y
# NOTE: you can do even more complex stuff with In(), not only default values
# NOTE: default values always come AFTER the other inputs with no defaults
f = theano.function([x, In(y, value=1)], z)
print(f(33)) # 34
print(f(33, 2)) # 35

w = T.dscalar('w')
z2 = (x + y)*w
f2 = theano.function([x, In(y, value=1), In(w, value=2, name='w_by_name')], z2)
print(f2(33)) # 68
print(f2(33, 2)) # 70
print(f2(33, 0, 1)) # 33
# NOTE: the above w_by_name allows us to specify w's value at another position
# than that of the original w (just like in regular languages). w_by_name overrides
开发者ID:taimir,项目名称:deep_learning,代码行数:31,代码来源:more_examples.py


示例17: function

import numpy
import theano.tensor as T
from theano import function
from theano import In

x, y, w = T.dscalars('x', 'y', 'w')
z = (x + 2 * y) * w
f = function([In(x, value = 0), In(y, value = 0, name='y_name'), In(w, value = 1)], z)
print 'f(): ' + str(f())
print 'f(4): ' + str(f(4))
print 'f(y_name=3): ' + str(f(y_name=3))
print 'f(4, 3, 2): ' + str(f(4, 3, 2))
print 'f(4, 3): ' + str(f(4, 3))
print 'f(y_name=3, w = 4): ' + str(f(y_name=3, w = 4))
开发者ID:dyut,项目名称:UseTheano,代码行数:14,代码来源:ParamsWithDefaultValue.py


示例18:

#coding: utf-8
import theano
import theano.tensor as T

## まとめて宣言
x, y = T.dscalars("x", "y")

z = (x+2*y)**2

## zをxについて微分
gx = T.grad(z, x)

## zをyについて微分
gy = T.grad(z, y)

## まとめて

v1 = [x, y]
v2 = [x, y]

## 配列を足してもできる
v = v1+v2

# vの中の変数について順番に微分
grads = T.grad(z, v)

print grads

fgy = theano.function([x, y], grads[3])
fgx = theano.function([x, y], grads[2])
开发者ID:MasazI,项目名称:Theano_Exercise,代码行数:30,代码来源:theano_grad.py


示例19: xrange

#!/usr/bin/env python
from theano import function
import theano.tensor as T
from theano.tensor import shared_randomstreams
import numpy as np
import numpy.random
from scipy.special import gammaincinv
from numpy.linalg import norm

# tensor stand-in for np.random.RandomState
rngT = shared_randomstreams.RandomStreams()
rng = numpy.random.RandomState()

# {{{ Fastfood Params }}}
n, d = T.dscalars('n', 'd')
# transform dimensions to be a power of 2
d0, n0 = d, n
l = T.ceil(T.log2(d))  # TODO cast to int
d = 2**l
k = T.ceil(n/d)  # TODO cast to int
n = d*k
# generate parameter 'matrices'
B = rng.choice([-1, 1], size=(k, d))
G = rng.normal(size=(k, d), dtype=np.float64)
PI = np.array([rng.permutation(d) for _ in xrange(k)]).T
S = np.empty((k*d, 1), dtype=np.float64)
# generate scaling matrix, S
for i in xrange(k):
    for j in xrange(d):
        p1 = rng.uniform(size=d)
        p2 = d/2
开发者ID:kafluette,项目名称:fastfood,代码行数:31,代码来源:fastfood.py


示例20: create_spatialglimpse_function

def create_spatialglimpse_function(img_h=480, img_w=640, fovH=64, fovW=64):
    fovHalfH = fovH / 2
    fovHalfW = fovW / 2
    glimpseInpImg = T.dtensor3('glimpseInpImg')
    glimpseInpLoc_y, glimpseInpLoc_x = T.dscalars('gilY', 'gilX') # each lies between -1 and 1
    glimpseLocOnImg_y = T.cast(((glimpseInpLoc_y + 1) / 2.0) * img_h, 'int32')
    glimpseLocOnImg_x = T.cast(((glimpseInpLoc_x + 1) / 2.0) * img_w, 'int32')

    y1 = T.max((glimpseLocOnImg_y - fovHalfH, 0))
    y2 = T.min((glimpseLocOnImg_y + fovHalfH, img_h))
    x1 = T.max((glimpseLocOnImg_x - fovHalfW, 0))
    x2 = T.min((glimpseLocOnImg_x + fovHalfW, img_w))

    y3 = T.max((glimpseLocOnImg_y - fovH, 0))
    y4 = T.min((glimpseLocOnImg_y + fovH, img_h))
    x3 = T.max((glimpseLocOnImg_x - fovW, 0))
    x4 = T.min((glimpseLocOnImg_x + fovW, img_w))

    y5 = T.max((glimpseLocOnImg_y - 2*fovH, 0))
    y6 = T.min((glimpseLocOnImg_y + 2*fovH, img_h))
    x5 = T.max((glimpseLocOnImg_x - 2*fovW, 0))
    x6 = T.min((glimpseLocOnImg_x + 2*fovW, img_w))

    glimpse1= glimpseInpImg[:, y1:y2, x1:x2]
    if T.lt(glimpse1.shape[1], fovH):
        pad = T.zeros((glimpse1.shape[0], fovH - glimpse1.shape[1], glimpse1.shape[2]))
        if T.eq(y1, 0):
            glimpse1 = T.concatenate((pad, glimpse1), 1)
        else:
            glimpse1 = T.concatenate((glimpse1, pad), 1)
    if T.lt(glimpse1.shape[2], fovW):
        pad = T.zeros((glimpse1.shape[0], glimpse1.shape[1], fovW - glimpse1.shape[2]))
        if T.eq(x1, 0):
            glimpse1 = T.concatenate((pad, glimpse1), 2)
        else:
            glimpse1 = T.concatenate((glimpse1, pad), 2)

    glimpse2 = glimpseInpImg[:, y3:y4, x3:x4]
    if T.lt(glimpse2.shape[1], 2*fovH):
        pad = T.zeros((glimpse2.shape[0], 2*fovH - glimpse2.shape[1], glimpse2.shape[2]))
        if T.eq(y3, 0):
            glimpse2 = T.concatenate((pad, glimpse2), 1)
        else:
            glimpse2 = T.concatenate((glimpse2, pad), 1)
    if T.lt(glimpse2.shape[2], 2*fovW):
        pad = T.zeros((glimpse2.shape[0], glimpse2.shape[1], 2*fovW - glimpse2.shape[2]))
        if T.eq(x3, 0):
            glimpse2 = T.concatenate((pad, glimpse2), 2)
        else:
            glimpse2 = T.concatenate((glimpse2, pad), 2)

    glimpse2 = T.signal.pool.pool_2d(glimpse2, (2, 2), ignore_border=True, mode='average_exc_pad')

    glimpse3 = glimpseInpImg[:, y5:y6, x5:x6]
    if T.lt(glimpse3.shape[1], 4*fovH):
        pad = T.zeros((glimpse3.shape[0], 4*fovH - glimpse3.shape[1], glimpse3.shape[2]))
        if T.eq(y5, 0):
            glimpse3 = T.concatenate((pad, glimpse3), 1)
        else:
            glimpse3 = T.concatenate((glimpse3, pad), 1)
    if T.lt(glimpse3.shape[2], 4*fovW):
        pad = T.zeros((glimpse3.shape[0], glimpse3.shape[1], 4*fovW - glimpse3.shape[2]))
        if T.eq(x5, 0):
            glimpse3 = T.concatenate((pad, glimpse3), 2)
        else:
            glimpse3 = T.concatenate((glimpse3, pad), 2)
    glimpse3 = pool.pool_2d(glimpse3, (4, 4), ignore_border=True, mode='average_exc_pad')

    glimpse1 = T.cast(glimpse1, 'uint8')
    glimpse2 = T.cast(glimpse2, 'uint8')
    glimpse3 = T.cast(glimpse3, 'uint8')

    fun = theano.function([glimpseInpImg, glimpseInpLoc_y, glimpseInpLoc_x], [glimpse1, glimpse2, glimpse3])
    return fun
开发者ID:harshhemani,项目名称:deeplearning,代码行数:74,代码来源:SpatGlimp.py



注:本文中的theano.tensor.dscalars函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.dtensor3函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.dscalar函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap