• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.and_函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.and_函数的典型用法代码示例。如果您正苦于以下问题:Python and_函数的具体用法?Python and_怎么用?Python and_使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了and_函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: getRpRnTpTnForTrain0OrVal1

    def getRpRnTpTnForTrain0OrVal1(self, y, training0OrValidation1):
        # The returned list has (numberOfClasses)x4 integers: >numberOfRealPositives, numberOfRealNegatives, numberOfTruePredictedPositives, numberOfTruePredictedNegatives< for each class (incl background).
        # Order in the list is the natural order of the classes (ie class-0 RP,RN,TPP,TPN, class-1 RP,RN,TPP,TPN, class-2 RP,RN,TPP,TPN ...)
        # param y: y = T.itensor4('y'). Dimensions [batchSize, r, c, z]
        
        yPredToUse = self.y_pred_train if  training0OrValidation1 == 0 else self.y_pred_val
        checkDimsOfYpredAndYEqual(y, yPredToUse, "training" if training0OrValidation1 == 0 else "validation")
        
        returnedListWithNumberOfRpRnTpTnForEachClass = []
        
        for class_i in xrange(0, self._numberOfOutputClasses) :
            #Number of Real Positive, Real Negatives, True Predicted Positives and True Predicted Negatives are reported PER CLASS (first for WHOLE).
            tensorOneAtRealPos = T.eq(y, class_i)
            tensorOneAtRealNeg = T.neq(y, class_i)

            tensorOneAtPredictedPos = T.eq(yPredToUse, class_i)
            tensorOneAtPredictedNeg = T.neq(yPredToUse, class_i)
            tensorOneAtTruePos = T.and_(tensorOneAtRealPos,tensorOneAtPredictedPos)
            tensorOneAtTrueNeg = T.and_(tensorOneAtRealNeg,tensorOneAtPredictedNeg)
                    
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtRealPos) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtRealNeg) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtTruePos) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtTrueNeg) )
            
        return returnedListWithNumberOfRpRnTpTnForEachClass
开发者ID:alonshmilo,项目名称:MedicalData_jce,代码行数:26,代码来源:cnnLayerTypes.py


示例2: ber

 def ber(self, y):
     tp = T.and_(T.eq(y, 1), T.eq(self.y_pred, 1)).sum()
     tn = T.and_(T.eq(y, 0), T.eq(self.y_pred, 0)).sum()
     fp = T.and_(T.eq(y, 0), T.eq(self.y_pred, 1)).sum()
     fn = T.and_(T.eq(y, 1), T.eq(self.y_pred, 0)).sum()
     ber = 0.5 * (T.true_div(fp, tp + fp) + T.true_div(fn, tn + fn))
     return ber
开发者ID:IraKorshunova,项目名称:CNN,代码行数:7,代码来源:logreg_layer.py


示例3: multiclassRealPosAndNegAndTruePredPosNegTraining0OrValidation1

    def multiclassRealPosAndNegAndTruePredPosNegTraining0OrValidation1(self, y, training0OrValidation1):
	"""
	The returned list has (numberOfClasses)x4 integers: >numberOfRealPositives, numberOfRealNegatives, numberOfTruePredictedPositives, numberOfTruePredictedNegatives< for each class (incl background).
	Order in the list is the natural order of the classes (ie class-0 RP,RN,TPP,TPN, class-1 RP,RN,TPP,TPN, class-2 RP,RN,TPP,TPN ...)
	"""
	returnedListWithNumberOfRpRnPpPnForEachClass = []

	for class_i in xrange(0, self.numberOfOutputClasses) :
		#Number of Real Positive, Real Negatives, True Predicted Positives and True Predicted Negatives are reported PER CLASS (first for WHOLE).
		vectorOneAtRealPositives = T.eq(y, class_i)
		vectorOneAtRealNegatives = T.neq(y, class_i)

		if training0OrValidation1 == 0 : #training:
			yPredToUse = self.y_pred
		else: #validation
			yPredToUse = self.y_pred_inference

		vectorOneAtPredictedPositives = T.eq(yPredToUse, class_i)
		vectorOneAtPredictedNegatives = T.neq(yPredToUse, class_i)
		vectorOneAtTruePredictedPositives = T.and_(vectorOneAtRealPositives,vectorOneAtPredictedPositives)
		vectorOneAtTruePredictedNegatives = T.and_(vectorOneAtRealNegatives,vectorOneAtPredictedNegatives)
		    
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtRealPositives) )
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtRealNegatives) )
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtTruePredictedPositives) )
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtTruePredictedNegatives) )

	return returnedListWithNumberOfRpRnPpPnForEachClass
开发者ID:pliu007,项目名称:deepmedic,代码行数:28,代码来源:cnnLayerTypes.py


示例4: one_run

def one_run(my_x, my_y, my_z,
            my_u, my_v, my_w,
            my_weight,
            my_heat, my_albedo, my_microns_per_shell):

    # move
    random = rng.uniform(low=0.00003, high=1.)
    t = -T.log(random)

    x_moved = my_x + my_u*t
    y_moved = my_y + my_v*t
    z_moved = my_z + my_w*t

    # absorb
    shell = T.cast(T.sqrt(T.sqr(x_moved) + T.sqr(y_moved) + T.sqr(z_moved))
                   * my_microns_per_shell, 'int32')
    shell = T.clip(shell, 0, SHELL_MAX-1)

    new_weight = my_weight * my_albedo

    # new direction
    xi1 = rng.uniform(low=-1., high=1.)
    xi2 = rng.uniform(low=-1., high=1.)
    xi_norm = T.sqrt(T.sqr(xi1) + T.sqr(xi2))

    t_xi = rng.uniform(low=0.000000001, high=1.)

    # rescale xi12 to fit t_xi as norm
    xi1 = xi1/xi_norm * T.sqr(t_xi)
    xi2 = xi2/xi_norm * T.sqr(t_xi)

    u_new_direction = 2. * t_xi - 1.
    v_new_direction = xi1 * T.sqrt((1. - T.sqr(u_new_direction)) / t_xi)
    w_new_direction = xi2 * T.sqrt((1. - T.sqr(u_new_direction)) / t_xi)

    # roulette
    weight_for_starting_roulette = 0.001
    CHANCE = 0.1
    partakes_roulette = T.switch(T.lt(new_weight, weight_for_starting_roulette),
                                 1,
                                 0)
    roulette = rng.uniform(low=0., high=1.)
    loses_roulette = T.gt(roulette, CHANCE)
    # if roulette decides to terminate the photon: set weight to 0
    weight_after_roulette = ifelse(T.and_(partakes_roulette, loses_roulette),
                                     0.,
                                     new_weight)
    # if partakes in roulette but does not get terminated
    weight_after_roulette = ifelse(T.and_(partakes_roulette, T.invert(loses_roulette)),
                                     weight_after_roulette / CHANCE,
                                     weight_after_roulette)

    new_heat = (1.0 - my_albedo) * my_weight
    heat_i = my_heat[shell]

    return (x_moved, y_moved, z_moved,\
           u_new_direction, v_new_direction, w_new_direction,\
           weight_after_roulette),\
           OrderedDict({my_heat: T.inc_subtensor(heat_i, new_heat)})
开发者ID:151706061,项目名称:MITK,代码行数:59,代码来源:monte_carlo_single_photon.py


示例5: confusion_matrix

 def confusion_matrix(self, y):
     """
     Returns confusion matrix
     """
     tp = T.and_(T.eq(y, 1), T.eq(self.y_pred, 1)).sum()
     tn = T.and_(T.eq(y, 0), T.eq(self.y_pred, 0)).sum()
     fp = T.and_(T.eq(y, 0), T.eq(self.y_pred, 1)).sum()
     fn = T.and_(T.eq(y, 1), T.eq(self.y_pred, 0)).sum()
     return [tp, tn, fp, fn]
开发者ID:IraKorshunova,项目名称:DataMiningProject,代码行数:9,代码来源:softmax_layer.py


示例6: theano_digitize

def theano_digitize(x, bins):
    """
    Equivalent to numpy digitize.

    Parameters
    ----------
    x : Theano tensor or array_like
        The array or matrix to be digitized
    bins : array_like
        The bins with which x should be digitized

    Returns
    -------
    A Theano tensor
        The indices of the bins to which each value in input array belongs.
    """
    binned = T.zeros_like(x) + len(bins)
    for i in range(len(bins)):
        bin=bins[i]
        if i == 0:
            binned=T.switch(T.lt(x,bin),i,binned)
        else:
            ineq = T.and_(T.ge(x,bins[i-1]),T.lt(x,bin))
            binned=T.switch(ineq,i,binned)
    binned=T.switch(T.isnan(x), len(bins), binned)
    return binned
开发者ID:eglxiang,项目名称:xnn,代码行数:26,代码来源:utils.py


示例7: errorReport

 def errorReport(self, y, n):
     # compute error rate by class
     # check if y has same dimension of y_pred
     if y.ndim != self.y_pred.ndim:
         raise TypeError('y should have the same shape as self.y_pred',
             ('y', target.type, 'y_pred', self.y_pred.type))
     # check if y is of the correct datatype
     if y.dtype.startswith('int'):
         c = numpy.zeros((self.n_out, self.n_out + 1), dtype=numpy.int64)
         counts = T.as_tensor_variable(c)
         classVector = numpy.zeros(n)
         for i in xrange(self.n_out):
             othersVector = numpy.zeros(n)
             for j in xrange(self.n_out):
                 counts = theano.tensor.basic.set_subtensor(
                     counts[i, j],
                     T.sum(T.and_(T.eq(self.y_pred, othersVector),
                                  T.eq(y, classVector))))
                 othersVector = othersVector + 1
             counts = theano.tensor.basic.set_subtensor(
                 counts[i, self.n_out],
                 T.sum(T.eq(y, classVector)))
             classVector = classVector + 1
         return counts
     else:
         raise NotImplementedError()
开发者ID:chagge,项目名称:DeepLearning,代码行数:26,代码来源:logistic_sgd.py


示例8: logp_loss3

	def logp_loss3(self, x, y, fake_label,neg_label, pos_ratio = 0.5): #adopt maxout  for  negative   
		# pos_rati0  means  pos examples weight (0.5 means  equal 1:1)


		print "adopt  positives  weight  ............. "+str(pos_ratio)
		y = y.dimshuffle((1,0))
		inx = x.dimshuffle((1,0))
		fake_mask = T.neq(y, fake_label)
		y = y*fake_mask

		pos_mask = T.and_(fake_mask, T.le(y, neg_label-1))*pos_ratio
		neg_mask = T.ge(y, neg_label)*(1- pos_ratio)


		pos_score, neg_score = self.structure2(inx,False)
		maxneg = T.max(neg_score, axis = -1)

		scores = T.concatenate((pos_score, maxneg.dimshuffle((0,1,'x'))), axis = 2)

		d3shape = scores.shape

		#seq*batch , label
		scores = scores.reshape((d3shape[0]*d3shape[1],  d3shape[2]))
		pro = T.nnet.softmax(scores)

		_logp = T.nnet.categorical_crossentropy(pro, y.flatten())

		_logp = _logp.reshape(fake_mask.shape)

		loss = (T.sum(_logp*pos_mask)+ T.sum(_logp*neg_mask))/ (T.sum(pos_mask)+T.sum(neg_mask))
		pos_loss = T.sum(_logp*pos_mask)
		neg_loss = T.sum(_logp*neg_mask)


		return loss, pos_loss, neg_loss
开发者ID:mswellhao,项目名称:active_NER,代码行数:35,代码来源:token_model.py


示例9: asimov_errors

 def asimov_errors(self, y):
     # check if y has same dimension of y_pred
     if y.ndim != self.logRegressionLayer.y_pred.ndim:
         raise TypeError(
             'y should have the same shape as self.y_pred',
             ('y', y.type, 'y_pred', self.y_pred.type)
         )
     # check if y is of the correct datatype
     if y.dtype.startswith('int'):
         S = T.sum(T.eq(y,1))
         B = T.sum(T.eq(y,0))#*10000 # TODO: cross-section scaling
         s = T.sum(T.and_(T.eq(y,1),T.eq(self.logRegressionLayer.y_pred,1)))
         b = T.sum(T.and_(T.eq(y,0),T.eq(self.logRegressionLayer.y_pred,1)))#*10000 TODO: cross-section scaling
         return(S,B,s,b)
         # represents a mistake in prediction
     else:
         raise NotImplementedError()
开发者ID:jannickep,项目名称:HiggsChallenge,代码行数:17,代码来源:mlp.py


示例10: incomplete_beta

def incomplete_beta(a, b, value):
    '''Incomplete beta implementation
    Power series and continued fraction expansions chosen for best numerical
    convergence across the board based on inputs.
    '''
    machep = tt.constant(np.MachAr().eps, dtype='float64')
    one = tt.constant(1, dtype='float64')
    w = one - value

    ps = incomplete_beta_ps(a, b, value)

    flip = tt.gt(value, (a / (a + b)))
    aa, bb = a, b
    a = tt.switch(flip, bb, aa)
    b = tt.switch(flip, aa, bb)
    xc = tt.switch(flip, value, w)
    x = tt.switch(flip, w, value)

    tps = incomplete_beta_ps(a, b, x)
    tps = tt.switch(tt.le(tps, machep), one - machep, one - tps)

    # Choose which continued fraction expansion for best convergence.
    small = tt.lt(x * (a + b - 2.0) - (a - one), 0.0)
    cfe = incomplete_beta_cfe(a, b, x, small)
    w = tt.switch(small, cfe, cfe / xc)

    # Direct incomplete beta accounting for flipped a, b.
    t = tt.exp(
        a * tt.log(x) + b * tt.log(xc) +
        gammaln(a + b) - gammaln(a) - gammaln(b) +
        tt.log(w / a)
    )

    t = tt.switch(
        flip,
        tt.switch(tt.le(t, machep), one - machep, one - t),
        t
    )
    return tt.switch(
        tt.and_(flip, tt.and_(tt.le((b * x), one), tt.le(x, 0.95))),
        tps,
        tt.switch(
            tt.and_(tt.le(b * value, one), tt.le(value, 0.95)),
            ps,
            t))
开发者ID:alexander-belikov,项目名称:pymc3,代码行数:45,代码来源:dist_math.py


示例11: jaccard_similarity

def jaccard_similarity(y_true, y_predicted):
    """
    y_true: tensor ({1, 0})
    y_predicted: tensor ({1, 0})
    note - we round predicted because float probabilities would not work
    """
    y_predicted = T.round(y_predicted).astype(theano.config.floatX)
    either_nonzero = T.or_(T.neq(y_true, 0), T.neq(y_predicted, 0))
    return T.and_(T.neq(y_true, y_predicted), either_nonzero).sum(axis=-1, dtype=theano.config.floatX) / either_nonzero.sum(axis=-1, dtype=theano.config.floatX)
开发者ID:fdoperezi,项目名称:santander,代码行数:9,代码来源:classification.py


示例12: dtw

 def dtw(i, q_p, b_p, Q, D, inf):
   i0 = T.eq(i, 0)
   # inf = T.cast(1e10,'float32') * T.cast(T.switch(T.eq(self.n,0), T.switch(T.eq(i,0), 0, 1), 1), 'float32')
   penalty = T.switch(T.and_(T.neg(n0), i0), big, T.constant(0.0, 'float32'))
   loop = T.constant(0.0, 'float32') + q_p
   forward = T.constant(0.0, 'float32') + T.switch(T.or_(n0, i0), 0, Q[i - 1])
   opt = T.stack([loop, forward])
   k_out = T.cast(T.argmin(opt, axis=0), 'int32')
   return opt[k_out, T.arange(opt.shape[1])] + D[i] + penalty, k_out
开发者ID:atuxhe,项目名称:returnn,代码行数:9,代码来源:RecurrentTransform.py


示例13: in_transit

    def in_transit(self, t, r=0.0, texp=None):
        """Get a list of timestamps that are in transit

        Args:
            t (vector): A vector of timestamps to be evaluated.
            r (Optional): The radii of the planets.
            texp (Optional[float]): The exposure time.

        Returns:
            The indices of the timestamps that are in transit.

        """

        z = tt.zeros_like(self.a)
        r = tt.as_tensor_variable(r) + z
        R = self.r_star + z

        # Wrap the times into time since transit
        hp = 0.5 * self.period
        dt = tt.mod(self._warp_times(t) - self.t0 + hp, self.period) - hp

        if self.ecc is None:
            # Equation 14 from Winn (2010)
            k = r / R
            arg = tt.square(1 + k) - tt.square(self.b)
            factor = R / (self.a * self.sin_incl)
            hdur = hp * tt.arcsin(factor * tt.sqrt(arg)) / np.pi
            t_start = -hdur
            t_end = hdur
            flag = z

        else:
            M_contact = self.contact_points_op(
                self.a, self.ecc, self.cos_omega, self.sin_omega,
                self.cos_incl + z, self.sin_incl + z, R + r)
            flag = M_contact[2]

            t_start = (M_contact[0] - self.M0) / self.n
            t_start = tt.mod(t_start + hp, self.period) - hp
            t_end = (M_contact[1] - self.M0) / self.n
            t_end = tt.mod(t_end + hp, self.period) - hp

            t_start = tt.switch(tt.gt(t_start, 0.0),
                                t_start - self.period, t_start)
            t_end = tt.switch(tt.lt(t_end, 0.0),
                              t_end + self.period, t_end)

        if texp is not None:
            t_start -= 0.5*texp
            t_end += 0.5*texp

        mask = tt.any(tt.and_(dt >= t_start, dt <= t_end), axis=-1)
        result = ifelse(tt.all(tt.eq(flag, 0)),
                        tt.arange(t.size)[mask],
                        tt.arange(t.size))

        return result
开发者ID:dfm,项目名称:exoplanet,代码行数:57,代码来源:keplerian.py


示例14: objective

def objective(y_true, y_pred, P, Q, alpha=0., beta=0.15, dbeta=0., gamma=0.01, gamma1=-1., poos=0.23, eps=1e-6):
    '''Expects a binary class matrix instead of a vector of scalar classes.
    '''

    beta = np.float32(beta)
    dbeta = np.float32(dbeta)
    gamma = np.float32(gamma)
    poos = np.float32(poos)
    eps = np.float32(eps)

    # scale preds so that the class probas of each sample sum to 1
    y_pred += eps
    y_pred /= y_pred.sum(axis=-1, keepdims=True)

    y_true = T.cast(y_true.flatten(), 'int64')
    y1 = T.and_(T.gt(y_true, 0), T.le(y_true, Q))  # in-set
    y0 = T.or_(T.eq(y_true, 0), T.gt(y_true, Q))  # out-of-set or unlabeled
    y0sum = y0.sum() + eps  # number of oos
    y1sum = y1.sum() + eps  # number of in-set
    # we want to reduce cross entrophy of labeled data
    # convert all oos/unlabeled to label=0
    cost0 = T.nnet.categorical_crossentropy(y_pred, T.switch(y_true <= Q, y_true, 0))
    cost0 = T.dot(y1, cost0) / y1sum  # average cost per labeled example

    if alpha:
        cost1 = T.nnet.categorical_crossentropy(y_pred, y_pred)
        cost1 = T.dot(y0, cost1) / y0sum  # average cost per labeled example
        cost0 += alpha*cost1

    # we want to increase the average entrophy in each batch
    # average over batch
    if beta:
        y_pred_avg0 = T.dot(y0, y_pred) / y0sum
        y_pred_avg0 = T.clip(y_pred_avg0, eps, np.float32(1) - eps)
        y_pred_avg0 /= y_pred_avg0.sum(axis=-1, keepdims=True)
        cost2 = T.nnet.categorical_crossentropy(y_pred_avg0.reshape((1,-1)), P-dbeta)[0] # [None,:]
        cost2 = T.switch(y0sum > 0.5, cost2, 0.)  # ignore cost2 if no samples
        cost0 += beta*cost2

    # binary classifier score
    if gamma:
        y_pred0 = T.clip(y_pred[:,0], eps, np.float32(1) - eps)
        if gamma1 < 0.:
            cost3 = - T.dot(poos*y0,T.log(y_pred0)) - T.dot(np.float32(1)-poos*y0.T,T.log(np.float32(1)-y_pred0))
            cost3 /= y_pred.shape[0]
            cost0 += gamma*cost3
        elif gamma1 > 0.:
            cost3 = - T.dot(poos*y0,T.log(y_pred0)) - T.dot((np.float32(1)-poos)*y0,T.log(np.float32(1)-y_pred0))
            cost3 /= y0sum
            cost31 =  - T.dot(y1,T.log(np.float32(1)-y_pred0))
            cost3 /= y1sum
            cost0 += gamma*cost3 + gamma1*cost31
        else:  # gamma1 == 0.
            cost3 = - T.dot(poos*y0,T.log(y_pred0)) - T.dot((np.float32(1)-poos)*y0, T.log(np.float32(1)-y_pred0))
            cost3 /= y0sum
            cost0 += gamma*cost3
    return cost0
开发者ID:fulldecent,项目名称:LRE,代码行数:57,代码来源:ladder.py


示例15: masked_categorical_accuracy

def masked_categorical_accuracy(y_true, y_pred, mask):

    y_true = K.argmax(y_true, axis=-1)
    y_pred = K.argmax(y_pred, axis=-1)

    error = K.equal(y_true, y_pred)

    mask_template = T.and_(T.neq(y_true,  mask), T.neq(y_true, 0)).nonzero()

    return K.mean(error[mask_template])
开发者ID:rudaoshi,项目名称:neuralmachines,代码行数:10,代码来源:sequence_tagging_keras.py


示例16: build_model

def build_model(shared_params, options, other_params):
    """
    Build the complete neural network model and return the symbolic variables
    """
    # symbolic variables
    x = tensor.matrix(name="x", dtype=floatX)
    y1 = tensor.iscalar(name="y1")
    y2 = tensor.iscalar(name="y2")

    # lstm cell
    (ht, ct) = lstm_cell(x, shared_params, options, other_params)  # gets the ht, ct
    # softmax 1 i.e. frame type prediction
    activation = tensor.dot(shared_params['softmax1_W'], ht).transpose() + shared_params['softmax1_b']
    frame_pred = tensor.nnet.softmax(activation) # .transpose()

    # softmax 2 i.e. gesture class prediction
    #

    # predicted probability for frame type
    f_pred_prob = theano.function([x], frame_pred, name="f_pred_prob")
    # predicted frame type
    f_pred = theano.function([x], frame_pred.argmax(), name="f_pred")

    # cost
    cost = ifelse(tensor.eq(y1, 1), 
                  -tensor.log(frame_pred[0, 0] + options['log_offset']) * other_params['begin_cost_factor'],
                  ifelse(tensor.eq(y1, 2), 
                         -tensor.log(frame_pred[0, 1] + options['log_offset']) * other_params['end_cost_factor'],
                         ifelse(tensor.and_(tensor.eq(y1, 3), tensor.eq(other_params['near_boundary'], 1)),
                                -tensor.log(frame_pred[0, 2] + frame_pred[0, 0] + options['log_offset']),
                                ifelse(tensor.and_(tensor.eq(y1, 3), tensor.eq(other_params['near_boundary'], 2)),
                                       -tensor.log(frame_pred[0, 2] + frame_pred[0, 1] + options['log_offset']),
                                       ifelse(tensor.eq(y1, 3), 
                                              -tensor.log(frame_pred[0, 2] + options['log_offset']),
                                              tensor.abs_(tensor.log(y1)))))), name='ifelse_cost')  
    # ^ last else is a dummy value above. y1 = 1/2/3 based on the frame type

    # function for output of the currect lstm cell and softmax prediction
    f_model_cell_output = theano.function([x], (ht, ct, frame_pred), name="f_model_cell_output")
    # return the model symbolic variables and theano functions
    return x, y1, y2, f_pred_prob, f_pred, cost, f_model_cell_output
开发者ID:inblueswithu,项目名称:Theano_Trail,代码行数:41,代码来源:lstm_model_4.py


示例17: spatial_gradient

def spatial_gradient(prediction, target, l=0.1,m=2.):
    # Flatten input to make calc easier
    pred = prediction
    pred_v = pred.flatten(2)
    target_v = target.flatten(2)
    # Compute mask
    mask = T.gt(target_v,0.)
    # Compute n of valid pixels
    n_valid = T.sum(mask, axis=1)
    # Apply mask and log transform
    m_pred = pred_v * mask
    m_t = T.switch(mask, T.log(target_v),0.)
    d = m_pred - m_t

    # Define scale invariant cost
    scale_invariant_cost = (T.sum(n_valid * T.sum(d**2, axis=1)) - l*T.sum(T.sum(d, axis=1)**2))/ T.maximum(T.sum(n_valid**2), 1)

    # Add spatial gradient components from D. Eigen DNL

    # Squeeze in case
    if pred.ndim == 4:
        pred = pred[:,0,:,:]
    if target.ndim == 4:
        target = target[:,0,:,:]
    # Mask in tensor form
    mask_tensor = T.gt(target,0.)
    # Project into log space
    target = T.switch(mask_tensor, T.log(target),0.)
    # Stepsize
    h = 1
    # Compute spatial gradients symbolically
    p_di = (pred[:,h:,:] - pred[:,:-h,:]) * (1 / np.float32(h))
    p_dj = (pred[:,:,h:] - pred[:,:,:-h]) * (1 / np.float32(h))
    t_di = (target[:,h:,:] - target[:,:-h,:]) * (1 / np.float32(h))
    t_dj = (target[:,:,h:] - target[:,:,:-h]) * (1 / np.float32(h))
    m_di = T.and_(mask_tensor[:,h:,:], mask_tensor[:,:-h,:])
    m_dj = T.and_(mask_tensor[:,:,h:], mask_tensor[:,:,:-h])
    # Define spatial grad cost
    grad_cost = T.sum(m_di * (p_di - t_di)**2) / T.sum(m_di) + T.sum(m_dj * (p_dj - t_dj)**2) / T.sum(m_dj)
    # Compute final expression
    return scale_invariant_cost + grad_cost
开发者ID:sebastian-schlecht,项目名称:im2vol,代码行数:41,代码来源:losses.py


示例18: sequential_and

def sequential_and(*conditions):
    """ Use ``and`` operator between all conditions. Function is just
    a syntax sugar that make long Theano logical conditions looks
    less ugly.

    Parameters
    ----------
    *conditions
        Conditions that returns ``True`` or ``False``
    """
    first_condition, other_conditions = conditions[0], conditions[1:]
    if not other_conditions:
        return first_condition
    return T.and_(first_condition, sequential_and(*other_conditions))
开发者ID:EdwardBetts,项目名称:neupy,代码行数:14,代码来源:wolfe.py


示例19: realPosAndNegAndTruePredPosNegTraining0OrValidation1

    def realPosAndNegAndTruePredPosNegTraining0OrValidation1(self, y, training0OrValidation1):
	#***Implemented only for binary***. For multiclass, it counts real-positives as everything not-background, and as true positives the true predicted lesion (ind of class).
        vectorOneAtRealPositives = T.gt(y,0)
        vectorOneAtRealNegatives = T.eq(y,0)
	if training0OrValidation1 == 0 : #training:
		yPredToUse = self.y_pred
	else: #validation
		yPredToUse = self.y_pred_inference
        vectorOneAtPredictedPositives = T.gt(yPredToUse,0)
        vectorOneAtPredictedNegatives = T.eq(yPredToUse,0)
        vectorOneAtTruePredictedPositives = T.and_(vectorOneAtRealPositives,vectorOneAtPredictedPositives)
        vectorOneAtTruePredictedNegatives = T.and_(vectorOneAtRealNegatives,vectorOneAtPredictedNegatives)
            
        numberOfRealPositives = T.sum(vectorOneAtRealPositives)
        numberOfRealNegatives = T.sum(vectorOneAtRealNegatives)
        numberOfTruePredictedPositives = T.sum(vectorOneAtTruePredictedPositives)
        numberOfTruePredictedNegatives = T.sum(vectorOneAtTruePredictedNegatives)

	return [ numberOfRealPositives,
                 numberOfRealNegatives,
                 numberOfTruePredictedPositives,
                 numberOfTruePredictedNegatives
               ]
开发者ID:pliu007,项目名称:deepmedic,代码行数:23,代码来源:cnnLayerTypes.py


示例20: berhu_spatial

def berhu_spatial(predictions, targets, s=0.2, l=0., m=10., gw=0.5):
    # Compute mask
    mask = T.gt(targets, l) * T.lt(targets,m)

    # Compute n of valid pixels
    n_valid = T.sum(mask)
    r = (predictions - targets) * mask
    c = s * T.max(T.abs_(r))
    a_r = T.abs_(r)
    b = T.switch(T.lt(a_r, c), a_r, ((r**2) + (c**2))/(2*c))
    
    pixel_cost = T.sum(b)/n_valid
    
    # Gradient cost
    h = 1
    pred = predictions
    target = targets
    
    if pred.ndim == 4:
        pred = pred[:,0,:,:]
    if target.ndim == 4:
        target = target[:,0,:,:]
    
    # Recompute mask
    mask = T.gt(target, l) * T.lt(target,m)
        
    p_di = (pred[:,h:,:] - pred[:,:-h,:]) * (1 / np.float32(h))
    p_dj = (pred[:,:,h:] - pred[:,:,:-h]) * (1 / np.float32(h))
    t_di = (target[:,h:,:] - target[:,:-h,:]) * (1 / np.float32(h))
    t_dj = (target[:,:,h:] - target[:,:,:-h]) * (1 / np.float32(h))
    m_di = T.and_(mask[:,h:,:], mask[:,:-h,:])
    m_dj = T.and_(mask[:,:,h:], mask[:,:,:-h])
    # Define spatial grad cost
    grad_cost = T.sum(m_di * T.abs_(p_di - t_di)) / T.sum(m_di) + T.sum(m_dj * T.abs_(p_dj - t_dj)) / T.sum(m_dj)
    
    return gw * grad_cost + pixel_cost
开发者ID:sebastian-schlecht,项目名称:im2vol,代码行数:36,代码来源:losses.py



注:本文中的theano.tensor.and_函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.any函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.alloc函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap