本文整理汇总了Python中theano.sandbox.cuda.use函数的典型用法代码示例。如果您正苦于以下问题:Python use函数的具体用法?Python use怎么用?Python use使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了use函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_maxout_conv_c01b_cifar10
def test_maxout_conv_c01b_cifar10(self):
if cuda.cuda_available is False:
raise SkipTest('Optional package cuda disabled')
if not hasattr(cuda, 'unuse'):
raise Exception("Theano version too old to run this test!")
# Tests that we can run a small convolutional model on GPU,
assert cuda.cuda_enabled is False
# Even if there is a GPU, but the user didn't specify device=gpu
# we want to run this test.
try:
old_floatX = config.floatX
cuda.use('gpu')
config.floatX = 'float32'
try:
train = yaml_parse.load(yaml_string_maxout_conv_c01b_cifar10)
except NoDataPathError:
raise SkipTest("PYLEARN2_DATA_PATH environment variable "
"not defined")
train.main_loop()
# Check that the performance is close to the expected one:
# test_y_misclass: 0.3777000308036804
misclass_chan = train.algorithm.monitor.channels['test_y_misclass']
assert misclass_chan.val_record[-1] < 0.38
# test_y_nll: 1.0978516340255737
nll_chan = train.algorithm.monitor.channels['test_y_nll']
assert nll_chan.val_record[-1] < 1.1
finally:
config.floatX = old_floatX
cuda.unuse()
assert cuda.cuda_enabled is False
开发者ID:SuperElectric,项目名称:pylearn2,代码行数:30,代码来源:test_maxout.py
示例2: init_theano
def init_theano():
"""Initialize Theano for Caffe
"""
global theano_initialized
if theano_initialized:
return
import caffe
from theano.sandbox.cuda import use
assert caffe.check_mode_gpu()
use('gpu%d' % caffe.get_device())
theano_initialized = True
开发者ID:NHZlX,项目名称:tnarihi-caffe-helper,代码行数:11,代码来源:theano_util.py
示例3: set_gpu_from_theano
def set_gpu_from_theano():
"""
This set the GPU used by PyCUDA to the same as the one used by Theano.
"""
#import pdb;pdb.set_trace()
if cuda.use.device_number is None:
cuda.use("gpu",
force=False,
default_to_move_computation_to_gpu=False,
move_shared_float32_to_gpu=False,
enable_cuda=True,
test_driver=True)
assert cuda.use.device_number == cuda_ndarray.active_device_number()
开发者ID:NicolasBouchard,项目名称:Theano,代码行数:14,代码来源:pycuda_init.py
示例4: test_cuda
def test_cuda():
import theano.sandbox.cuda as theano_cuda
assert_true(theano_cuda.cuda_available, "Theano CUDA support not available. Check that nvcc is in $PATH.")
if theano_cuda.cuda_enabled: # already enabled when $THEANO_FLAGS=device=gpu
print("CUDA already enabled")
else:
print("Call theano_cuda.use")
theano_cuda.use(device="gpu", force=True)
try:
import cuda_ndarray.cuda_ndarray as cuda
except ImportError as exc:
raise Exception("Theano CUDA support seems broken: %s" % exc)
id = cuda.active_device_number(); """ :type: int """
device_name = cuda.active_device_name(); """ :type: str """
print("id: %i", id)
print("dev name: %s" % device_name)
开发者ID:atuxhe,项目名称:returnn,代码行数:16,代码来源:test_gpu.py
示例5: test_maxout_conv_c01b_basic
def test_maxout_conv_c01b_basic(self):
if cuda.cuda_available is False:
raise SkipTest('Optional package cuda disabled')
if not hasattr(cuda, 'unuse'):
raise Exception("Theano version too old to run this test!")
# Tests that we can run a small convolutional model on GPU,
assert cuda.cuda_enabled is False
# Even if there is a GPU, but the user didn't specify device=gpu
# we want to run this test.
try:
old_floatX = config.floatX
cuda.use('gpu')
config.floatX = 'float32'
train = yaml_parse.load(yaml_string_maxout_conv_c01b_basic)
train.main_loop()
finally:
config.floatX = old_floatX
cuda.unuse()
assert cuda.cuda_enabled is False
开发者ID:SuperElectric,项目名称:pylearn2,代码行数:19,代码来源:test_maxout.py
示例6: test_output_broadcast_cuda
def test_output_broadcast_cuda(self):
from theano.sandbox import cuda
if not cuda.cuda_available:
raise SkipTest("Optional package Cuda disabled")
if cuda.use.device_number is None:
# We should normally set VecAsRowAndCol as a GPUOp But we
# don't want to do this here as this will disable others
# tests in this file. So we manually init the GPU if
# needed to remove warning.
cuda.use("gpu",
force=True,
default_to_move_computation_to_gpu=False,
move_shared_float32_to_gpu=False,
enable_cuda=False)
v = cuda.fvector('v')
c, r = VecAsRowAndCol()(v)
f = theano.function([v], [c, r])
v_val = cuda.CudaNdarray(self.rng.randn(5).astype('float32'))
f(v_val)
开发者ID:317070,项目名称:Theano,代码行数:20,代码来源:test_debugmode.py
示例7: py_conv_valid_numpy
#needed as the gpu conv don't have a perform implementation.
if theano.config.mode == 'FAST_COMPILE':
theano_mode = theano.compile.mode.get_mode('FAST_RUN').including('gpu')
else:
theano_mode = theano.compile.mode.get_default_mode().including('gpu')
cuda_tensor4 = cuda.CudaNdarrayType([False] * 4)
device_id = theano.sandbox.cuda.use.device_number
if device_id is None:
cuda.shared_constructor(numpy.zeros(2, dtype='float32'))
device_id = theano.sandbox.cuda.use.device_number
if device_id is None:
cuda.use("gpu",
force=False,
default_to_move_computation_to_gpu=False,
move_shared_float32_to_gpu=False,
enable_cuda=False,
test_driver=True)
device_id = theano.sandbox.cuda.use.device_number
cuda_ndarray = theano.sandbox.cuda.cuda_ndarray.cuda_ndarray
device_prop = cuda_ndarray.device_properties(device_id)
def py_conv_valid_numpy(img, kern):
assert img.shape[1] == kern.shape[1]
outshp = (img.shape[0], kern.shape[0],
img.shape[2] - kern.shape[2] + 1,
img.shape[3] - kern.shape[3] + 1)
out = numpy.zeros(outshp, dtype='float32')
for b in xrange(out.shape[0]):
开发者ID:JoeGlobal2014,项目名称:Theano,代码行数:32,代码来源:test_conv_cuda_ndarray.py
示例8: tes_use
开发者ID:gexarcha,项目名称:Theano,代码行数:2,代码来源:test_basic_ops.py
示例9: use
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
"""
import numpy
from theano.compile.sandbox import shared, pfunc
from theano import tensor
from pylearn.shared.layers import LogisticRegression, SigmoidalLayer
import theano.sandbox.softsign
import pylearn.datasets.MNIST
try:
# this tells theano to use the GPU if possible
from theano.sandbox.cuda import use
use()
except Exception, e:
print('Warning: Attempt to use GPU resulted in error "%s"' % str(e))
class LeNetConvPool(object):
"""WRITEME
Math of what the layer does, and what symbolic variables are created by the class (w, b,
output).
"""
#TODO: implement biases & scales properly. There are supposed to be more parameters.
# - one bias & scale per filter
# - one bias & scale per downsample feature location (a 2d bias)
# - more?
开发者ID:azizur77,项目名称:DeepLearningTutorials,代码行数:31,代码来源:convolutional_mlp.py
示例10: SkipTest
from numpy.testing.noseclasses import KnownFailureTest
import theano.sandbox.gpuarray
if theano.sandbox.gpuarray.pygpu is None:
raise SkipTest("pygpu not installed")
# If you are writing a new test file, don't copy this code, but rather
# import stuff from this file (like mode_with_gpu) to reuse it.
import theano.sandbox.cuda as cuda_ndarray
if cuda_ndarray.cuda_available and not theano.sandbox.gpuarray.pygpu_activated:
if not cuda_ndarray.use.device_number:
# We should not enable all the use like the flag device=gpu,
# as many tests don't work in that setup.
cuda_ndarray.use('gpu',
default_to_move_computation_to_gpu=False,
move_shared_float32_to_gpu=False,
enable_cuda=False)
theano.sandbox.gpuarray.init_dev('cuda')
if not theano.sandbox.gpuarray.pygpu_activated:
raise SkipTest("pygpu disabled")
from ..type import (GpuArrayType,
gpuarray_shared_constructor)
from ..basic_ops import (
host_from_gpu, gpu_from_host,
gpu_alloc, GpuAlloc,
GpuAllocEmpty,
gpu_from_cuda,
cuda_from_gpu, HostFromGpu,
GpuContiguous,
开发者ID:Ambier,项目名称:Theano,代码行数:32,代码来源:test_basic_ops.py
示例11: SkipTest
import numpy
import theano
from theano.tests import unittest_tools as utt
from theano.sandbox.gpuarray.basic_ops import GpuReshape
import theano.sandbox.gpuarray
if theano.sandbox.gpuarray.pygpu is None:
raise SkipTest("pygpu not installed")
import theano.sandbox.cuda as cuda_ndarray
if cuda_ndarray.cuda_available and not theano.sandbox.gpuarray.pygpu_activated:
if not cuda_ndarray.use.device_number:
cuda_ndarray.use('gpu')
theano.sandbox.gpuarray.init_dev('cuda')
if not theano.sandbox.gpuarray.pygpu_activated:
raise SkipTest("pygpu disabled")
if theano.config.mode == 'FAST_COMPILE':
mode_with_gpu = theano.compile.mode.get_mode('FAST_RUN').including('gpuarray').excluding('gpu')
mode_without_gpu = theano.compile.mode.get_mode('FAST_RUN').excluding('gpuarray')
else:
mode_with_gpu = theano.compile.mode.get_default_mode().including('gpuarray').excluding('gpu')
mode_without_gpu = theano.compile.mode.get_default_mode().excluding('gpuarray')
def test_flatten():
m = theano.tensor.fmatrix()
f = theano.function([m], m.flatten(), mode=mode_with_gpu)
val = numpy.random.rand(10,11).astype("float32")
开发者ID:csxlyan,项目名称:Theano,代码行数:31,代码来源:test_opt.py
注:本文中的theano.sandbox.cuda.use函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论