• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python gradient.grad_not_implemented函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.gradient.grad_not_implemented函数的典型用法代码示例。如果您正苦于以下问题:Python grad_not_implemented函数的具体用法?Python grad_not_implemented怎么用?Python grad_not_implemented使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了grad_not_implemented函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: grad

 def grad(self, inp, grads):
     softmaxes, y_idxes, y_lengths, y_startidxes = inp
     g_costs, = grads
     return [masked_loss_dx(softmaxes, y_idxes, y_lengths, y_startidxes, g_costs),
             grad_not_implemented(self, 1, y_idxes),
             grad_not_implemented(self, 1, y_lengths),
             grad_not_implemented(self, 1, y_startidxes)]
开发者ID:Beronx86,项目名称:theano_lstm,代码行数:7,代码来源:masked_loss.py


示例2: grad

 def grad(self, inputs, gradients):
     x, new_length, nonconstants = inputs
     d_out = gradients[0]
     swap = range(self.ndim)
     swap.remove(self.axis)
     swap.insert(0, self.axis)
     return [
         d_out.dimshuffle(swap)[nonconstants].dimshuffle(swap),
         grad_not_implemented(self, 1, new_length),
         grad_not_implemented(self, 2, nonconstants),
     ]
开发者ID:sonu5623,项目名称:pylearn2,代码行数:11,代码来源:insert_along_axis.py


示例3: grad

    def grad(self, inp, grads):
        kerns, top, output, desc, alpha, beta = inp
        img, = grads

        img = gpu_contiguous(img)

        d_kerns = GpuDnnConvGradW()(img, top, empty_like(kerns), desc)
        d_top = GpuDnnConv()(img, kerns, empty_like(top), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)

        return (d_kerns * alpha, d_top * alpha, img * beta, DisconnectedType()(), d_alpha, d_beta)
开发者ID:hhoareau,项目名称:Theano,代码行数:12,代码来源:dnn.py


示例4: grad

    def grad(self, inp, grads):
        kerns, top, output, desc, alpha, beta = inp
        img, = grads

        img = gpu_contiguous(img)

        d_kerns = GpuDnn3dConvGradW()(img, top, gpu_alloc_empty(*kerns.shape), desc)
        d_top = GpuDnn3dConv()(img, kerns, gpu_alloc_empty(*top.shape), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)
        return (d_kerns * alpha, d_top * alpha, img * beta,
                DisconnectedType()(), d_alpha, d_beta)
开发者ID:robintibor,项目名称:pylearn3dconv,代码行数:12,代码来源:conv.py


示例5: grad

    def grad(self, inp, grads):
        x, neib_shape, neib_step = inp
        gz, = grads

        if self.mode in ['valid', 'ignore_borders']:
            if (neib_shape is neib_step or
                neib_shape == neib_step or
                # Theano Constant == do not compare the data
                # the equals function do that.
                (hasattr(neib_shape, "equals") and
                 neib_shape.equals(neib_step))):
                return [neibs2images(gz, neib_shape, x.shape, mode=self.mode),
                        grad_undefined(self, 1, neib_shape),
                        grad_undefined(self, 2, neib_step)]

        if self.mode in ['valid']:
            # Iterate over neighborhood positions, summing contributions.
            def pos2map(pidx, pgz, prior_result, neib_shape, neib_step):
                '''
                Helper function that adds gradient contribution from a single
                neighborhood position i,j.
                pidx = Index of position within neighborhood.
                pgz  = Gradient of shape (batch_size*num_channels*neibs)
                prior_result  = Shape (batch_size, num_channnels, rows, cols)
                neib_shape = Number of rows, cols in a neighborhood.
                neib_step  = Step sizes from image2neibs.
                '''
                nrows, ncols = neib_shape
                rstep, cstep = neib_step
                batch_size, num_channels, rows, cols = prior_result.shape
                i = pidx // ncols
                j = pidx - (i * ncols)
                # This position does not touch some img pixels in valid mode.
                result_indices = prior_result[:, :,
                                              i:(rows - nrows + i + 1):rstep,
                                              j:(cols - ncols + j + 1):cstep]
                newshape = (batch_size, num_channels) + \
                           ((rows - nrows) // rstep + 1,) + \
                           ((cols - ncols) // cstep + 1,)
                return T.inc_subtensor(result_indices, pgz.reshape(newshape))
            indices = T.arange(neib_shape[0] * neib_shape[1])
            pgzs = gz.dimshuffle((1, 0))
            result, _ = theano.scan(fn=pos2map,
                                    sequences=[indices, pgzs],
                                    outputs_info=T.zeros(x.shape),
                                    non_sequences=[neib_shape, neib_step])
            grad_input = result[-1]
            return [grad_input,
                    grad_undefined(self, 1, neib_shape),
                    grad_undefined(self, 2, neib_step)]

        return [grad_not_implemented(self, 0, x),
                grad_undefined(self, 1, neib_shape),
                grad_undefined(self, 2, neib_step)]
开发者ID:Faruk-Ahmed,项目名称:Theano,代码行数:54,代码来源:neighbours.py


示例6: grad

    def grad(self, inp, grads):
        x, neib_shape, neib_step = inp
        gz, = grads

        if self.mode in ['valid', 'ignore_borders']:
            if (neib_shape is neib_step or
                neib_shape == neib_step or
                # Theano Constant == do not compare the data
                # the equals function do that.
                (hasattr(neib_shape, "equals") and
                 neib_shape.equals(neib_step))):
                return [neibs2images(gz, neib_shape, x.shape, mode=self.mode),
                        grad_undefined(self, 1, neib_shape),
                        grad_undefined(self, 2, neib_step)]
        return [grad_not_implemented(self, 0, x),
                grad_undefined(self, 1, neib_shape),
                grad_undefined(self, 2, neib_step)]
开发者ID:c0g,项目名称:Theano,代码行数:17,代码来源:neighbours.py


示例7: grad

 def grad(self, inputs, gout):
     (input_x,) = inputs
     return [grad_not_implemented(self, 0, input_x)]
开发者ID:juancamilog,项目名称:Theano,代码行数:3,代码来源:subtensor.py


示例8: grad

 def grad(self, inputs, grads):
     v, x = inputs
     gz, = grads
     return [grad_not_implemented(self, 0, v),
             gz * (iv(v - 1, x) + iv(v + 1, x)) / 2.]
开发者ID:Thrandis,项目名称:Theano,代码行数:5,代码来源:basic_scipy.py


示例9: grad

 def grad(self, inputs, ograds):
     return [grad_not_implemented(self, i, inputs[i]) for i in xrange(len(inputs))]
开发者ID:mila-udem,项目名称:platoon,代码行数:2,代码来源:ops.py


示例10: grad

 def grad(self, inp, grads):
     coding, one_of_n = inp
     g_y, = grads
     crossentropy_categorical_1hot_grad = rocGrad()
     return [crossentropy_categorical_1hot_grad(g_y, coding, one_of_n),
             grad_not_implemented(self, 1, one_of_n)]    
开发者ID:PPPW,项目名称:Kaggle-Springleaf-Marketing-Response,代码行数:6,代码来源:springleaf.py



注:本文中的theano.gradient.grad_not_implemented函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python gradient.grad_undefined函数代码示例发布时间:2022-05-27
下一篇:
Python gradient.grad函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap