• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python opt.copy_stack_trace函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.gof.opt.copy_stack_trace函数的典型用法代码示例。如果您正苦于以下问题:Python copy_stack_trace函数的具体用法?Python copy_stack_trace怎么用?Python copy_stack_trace使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了copy_stack_trace函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: local_inv_1_plus_exp

def local_inv_1_plus_exp(node):
    """
    1/(1+exp(x)) -> sigm(-x)

    """
    # this optimization should be done for numerical stability
    # so we don't care to check client counts
    if node.op == tensor.inv:
        inv_arg = node.inputs[0]
        if inv_arg.owner and inv_arg.owner.op == tensor.add:
            scalars, scalar_inputs, nonconsts = \
                opt.scalarconsts_rest(inv_arg.owner.inputs, only_process_constants=True)
            # scalar_inputs are potentially dimshuffled and fill'd scalars
            if len(nonconsts) == 1:
                if nonconsts[0].owner and nonconsts[0].owner.op == tensor.exp:
                    if scalars and numpy.allclose(numpy.sum(scalars), 1):
                        out = opt._fill_chain(
                            sigmoid(
                                tensor.neg(nonconsts[0].owner.inputs[0])),
                            scalar_inputs)
                        # keep combined stack traces of
                        #     exp(x):           nonconsts[0],
                        #     1 + exp(x):       inv_arg,
                        #     1 / (1 + exp(x)): node.outputs[0]
                        copy_stack_trace(
                            [nonconsts[0], inv_arg, node.outputs[0]], out)
                        return out
开发者ID:12190143,项目名称:Theano,代码行数:27,代码来源:sigm.py


示例2: local_conv2d_cpu

def local_conv2d_cpu(node):

    if (not isinstance(node.op, AbstractConv2d) or
            node.inputs[0].dtype == 'float16'):
        return None

    img, kern = node.inputs
    if ((not isinstance(img.type, TensorType) or
         not isinstance(kern.type, TensorType))):
        return None
    if node.op.border_mode not in ['full', 'valid']:
        return None
    if not node.op.filter_flip:
        # Not tested yet
        return None
    if node.op.num_groups > 1:
        return None

    rval = conv2d(img, kern,
                  node.op.imshp, node.op.kshp,
                  border_mode=node.op.border_mode,
                  subsample=node.op.subsample)

    copy_stack_trace(node.outputs[0], rval)
    return [rval]
开发者ID:Thrandis,项目名称:Theano,代码行数:25,代码来源:opt.py


示例3: local_ultra_fast_sigmoid

def local_ultra_fast_sigmoid(node):
    """
    When enabled, change all sigmoid to ultra_fast_sigmoid.

    For example do mode.including('local_ultra_fast_sigmoid')
    or use the Theano flag optimizer_including=local_ultra_fast_sigmoid.

    This speeds up the sigmoid op by using an approximation.

    This is done after the stabilization and specialize phases
    to avoid interacting with them.

    """
    if (isinstance(node.op, tensor.Elemwise) and
            node.op.scalar_op == scalar_sigmoid):
        out = ultra_fast_sigmoid(node.inputs[0])
        copy_stack_trace(node.outputs[0], out)

        def values_eq_approx_remove_low_prec(a, b):
            # atol is found by trial/error.
            # Other test could fail without good reason.
            return tensor.TensorType.values_eq_approx(a, b, atol=0.02)
        # Let DebugMode know that there this opt approx the values.
        out.tag.values_eq_approx = values_eq_approx_remove_low_prec
        return [out]
开发者ID:12190143,项目名称:Theano,代码行数:25,代码来源:sigm.py


示例4: local_conv3d_gradweight_cpu

def local_conv3d_gradweight_cpu(node):
    if not isinstance(node.op, AbstractConv3d_gradWeights):
        return None

    img, topgrad, shape = node.inputs
    if ((not isinstance(img.type, TensorType) or
         not isinstance(topgrad.type, TensorType))):
        return None
    if node.op.border_mode not in ['valid', (0, 0, 0)]:
        return None
    if node.op.filter_dilation != (1, 1, 1):
        return None

    # conv3D expects shape (batch, row, column, time, channel)
    img = img.dimshuffle(0, 2, 3, 4, 1)
    topgrad = topgrad.dimshuffle(0, 2, 3, 4, 1)

    W_shape = (topgrad.shape[4], shape[0], shape[1], shape[2], img.shape[4])

    rval = convGrad3D(img, node.op.subsample, W_shape, topgrad)
    copy_stack_trace(node.outputs[0], rval)
    rval = rval.dimshuffle(0, 4, 1, 2, 3)

    # need to flip the kernel if necessary (conv3D does not flip)
    if node.op.filter_flip:
        rval = rval[:, :, ::-1, ::-1, ::-1]

    rval = theano.tensor.patternbroadcast(rval,
                                          node.outputs[0].broadcastable)
    return [rval]
开发者ID:Thrandis,项目名称:Theano,代码行数:30,代码来源:opt.py


示例5: local_conv3d_gradinputs_cpu

def local_conv3d_gradinputs_cpu(node):
    if not isinstance(node.op, AbstractConv3d_gradInputs):
        return None

    kern, topgrad, shape = node.inputs
    if ((not isinstance(kern.type, TensorType) or
         not isinstance(topgrad.type, TensorType))):
        return None
    if node.op.border_mode not in ['valid', (0, 0, 0)]:
        return None
    if node.op.filter_dilation != (1, 1, 1):
        return None

    # need to flip the kernel if necessary (conv3D does not flip)
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1, ::-1]

    # conv3D expects shape (batch, row, column, time, channel)
    kern = kern.dimshuffle(0, 2, 3, 4, 1)
    topgrad = topgrad.dimshuffle(0, 2, 3, 4, 1)
    bias = theano.tensor.zeros_like(kern[0, 0, 0, 0, :])

    rval = convTransp3D(kern, bias, node.op.subsample, topgrad, shape)
    copy_stack_trace(node.outputs[0], rval)
    rval = rval.dimshuffle(0, 4, 1, 2, 3)

    rval = theano.tensor.patternbroadcast(rval,
                                          node.outputs[0].broadcastable)
    return [rval]
开发者ID:Thrandis,项目名称:Theano,代码行数:29,代码来源:opt.py


示例6: local_abstractconv_gemm

def local_abstractconv_gemm(node):
    # If theano.config.blas.ldflags is empty, Theano will use
    # a NumPy C implementation of [sd]gemm_.
    if theano.config.cxx == "" or node.inputs[0].dtype == 'float16':
        return
    if not isinstance(node.op, AbstractConv2d):
        return None
    img, kern = node.inputs
    if not isinstance(img.type, TensorType) or \
       not isinstance(kern.type, TensorType):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        flip = (slice(None),) * (kern.ndim - 2) + \
            (slice(None, None, -1),) * 2
        kern = kern[flip]
    rval = CorrMM(border_mode=node.op.border_mode,
                  subsample=node.op.subsample,
                  filter_dilation=node.op.filter_dilation,
                  num_groups=node.op.num_groups,
                  unshared=node.op.unshared)(img, kern)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:25,代码来源:opt.py


示例7: local_abstract_batch_norm_inference

def local_abstract_batch_norm_inference(node):
    if not isinstance(node.op, AbstractBatchNormInference):
        return None

    x, scale, bias, estimated_mean, estimated_variance, epsilon = node.inputs

    if not isinstance(x.type, TensorType) or \
       not isinstance(scale.type, TensorType) or \
       not isinstance(bias.type, TensorType) or \
       not isinstance(estimated_mean.type, TensorType) or \
       not isinstance(estimated_variance.type, TensorType) or \
       not isinstance(epsilon.type, TensorType):
        return None

    # The epsilon should not upcast the dtype.
    if estimated_variance.dtype == 'float32' and epsilon.dtype == 'float64':
        epsilon = epsilon.astype('float32')

    result = (x - estimated_mean) * (scale / T.sqrt(estimated_variance + epsilon)) + bias
    result = T.patternbroadcast(result, node.outputs[0].broadcastable)

    for var in theano.gof.graph.variables(node.inputs, [result]):
        if var not in node.inputs:
            copy_stack_trace(node.outputs[0], var)
    return [result]
开发者ID:HapeMask,项目名称:Theano,代码行数:25,代码来源:bn.py


示例8: local_abstractconv_gradweight_gemm

def local_abstractconv_gradweight_gemm(node):
    # If theano.config.blas.ldflags is empty, Theano will use
    # a NumPy C implementation of [sd]gemm_.
    if theano.config.cxx == "" or node.inputs[0].dtype == 'float16':
        return
    if not isinstance(node.op, AbstractConv2d_gradWeights):
        return None
    img, topgrad, shape = node.inputs
    if not isinstance(img.type, TensorType) or \
       not isinstance(topgrad.type, TensorType):
        return None

    rval = CorrMM_gradWeights(border_mode=node.op.border_mode,
                              subsample=node.op.subsample,
                              filter_dilation=node.op.filter_dilation,
                              num_groups=node.op.num_groups)(img, topgrad, shape)
    copy_stack_trace(node.outputs[0], rval)

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        rval = rval[:, :, ::-1, ::-1]
    rval = theano.tensor.patternbroadcast(rval, node.outputs[0].broadcastable)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
开发者ID:Thrandis,项目名称:Theano,代码行数:25,代码来源:opt.py


示例9: local_sigm_times_exp

def local_sigm_times_exp(node):
    """
    exp(x) * sigm(-x) -> sigm(x)
    exp(-x) * sigm(x) -> sigm(-x)

    todo: add stack traces to the intermediate variables
    """
    # Bail early if it is not a multiplication.
    if node.op != tensor.mul:
        return None
    # Obtain tree of multiplications starting at this node.
    mul_tree = parse_mul_tree(node.outputs[0])
    # Perform core optimization.
    did_something = perform_sigm_times_exp(mul_tree)
    if not did_something:
        # No change.
        return None
    # The optimization may have introduced multiplications by 1 in the tree:
    # get rid of them.
    mul_tree = simplify_mul(mul_tree)
    # Recompute final output based on the updated tree.
    out = compute_mul(mul_tree)
    # keep the stack trace
    copy_stack_trace(node.outputs[0], out)
    return [out]
开发者ID:12190143,项目名称:Theano,代码行数:25,代码来源:sigm.py


示例10: local_abstract_batch_norm_train_grad

def local_abstract_batch_norm_train_grad(node):
    if not isinstance(node.op, AbstractBatchNormTrainGrad):
        return None

    x, dy, scale, x_mean, x_invstd, epsilon = node.inputs
    axes = node.op.axes
    if min(axes) < 0 or max(axes) > x.ndim:
        return None
    if not isinstance(x.type, TensorType) or \
       not isinstance(dy.type, TensorType) or \
       not isinstance(scale.type, TensorType) or \
       not isinstance(x_mean.type, TensorType) or \
       not isinstance(x_invstd.type, TensorType) or \
       not isinstance(epsilon.type, TensorType):
        return None

    x_diff = x - x_mean
    mean_dy_x_diff = T.mean(dy * x_diff, axis=axes, keepdims=True)
    c = (dy * x_invstd) - x_diff * (mean_dy_x_diff * (x_invstd ** 3))

    g_wrt_inputs = scale * (c - T.mean(c, axis=axes, keepdims=True))
    g_wrt_scale = T.sum(dy * x_invstd * x_diff, axis=axes, keepdims=True)
    g_wrt_bias = T.sum(dy, axis=axes, keepdims=True)
    results = [g_wrt_inputs, g_wrt_scale, g_wrt_bias]

    results = [T.patternbroadcast(r, r_orig.broadcastable)
               for (r, r_orig) in zip(results, node.outputs)]

    for var in theano.gof.graph.variables(node.inputs, results):
        if var not in node.inputs:
            copy_stack_trace(node.outputs[0], var)
    return results
开发者ID:HapeMask,项目名称:Theano,代码行数:32,代码来源:bn.py


示例11: local_conv3d_cpu

def local_conv3d_cpu(node):
    if not isinstance(node.op, AbstractConv3d):
        return None

    img, kern = node.inputs
    if ((not isinstance(img.type, TensorType) or
         not isinstance(kern.type, TensorType))):
        return None
    if node.op.border_mode not in ['valid', (0, 0, 0)]:
        return None
    if node.op.filter_dilation != (1, 1, 1):
        return None

    bias = theano.tensor.zeros_like(kern[:, 0, 0, 0, 0])

    # need to flip the kernel if necessary (conv3D does not flip)
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1, ::-1]

    # conv3D expects shape (batch, row, column, time, channel)
    img = img.dimshuffle(0, 2, 3, 4, 1)
    kern = kern.dimshuffle(0, 2, 3, 4, 1)

    rval = conv3D(img, kern, bias, node.op.subsample)
    copy_stack_trace(node.outputs[0], rval)
    rval = rval.dimshuffle(0, 4, 1, 2, 3)

    return [rval]
开发者ID:Thrandis,项目名称:Theano,代码行数:28,代码来源:opt.py


示例12: local_inplace_sparse_block_outer

def local_inplace_sparse_block_outer(node):
    """
        SparseBlockOuter(inplace=False) -> SparseBlockOuter(inplace=True)
    """
    if isinstance(node.op, SparseBlockOuter) and not node.op.inplace:
        new_node = sparse_block_outer_inplace(*node.inputs)
        copy_stack_trace(node.outputs[0], new_node)
        return [new_node]
    return False
开发者ID:HHiroki,项目名称:Theano,代码行数:9,代码来源:opt.py


示例13: local_inplace_DiagonalSubtensor

def local_inplace_DiagonalSubtensor(node):
    """Also work for IncDiagonalSubtensor."""
    if (isinstance(node.op, (DiagonalSubtensor, IncDiagonalSubtensor)) and
            not node.op.inplace):
        new_op = node.op.__class__(inplace=True)
        new_node = new_op(*node.inputs)
        copy_stack_trace(node.outputs[0], new_node)
        return [new_node]
    return False
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:9,代码来源:conv3d2d.py


示例14: local_hard_sigmoid

def local_hard_sigmoid(node):
    if (isinstance(node.op, tensor.Elemwise) and
            node.op.scalar_op == scalar_sigmoid):
        out = hard_sigmoid(node.inputs[0])
        copy_stack_trace(node.outputs[0], out)

        def values_eq_approx_remove_low_prec(a, b):
            # atol is found by trial/error.
            # Other test could fail without good reason.
            return tensor.TensorType.values_eq_approx(a, b, atol=0.1)
        # Let DebugMode know that there this opt approx the values.
        out.tag.values_eq_approx = values_eq_approx_remove_low_prec
        return [out]
开发者ID:12190143,项目名称:Theano,代码行数:13,代码来源:sigm.py


示例15: local_max_and_argmax

def local_max_and_argmax(node):
    """
    If we don't use the argmax, change it to a max only.
    """
    if isinstance(node.op, T.MaxAndArgmax):
        axis = node.op.get_params(node)
        if len(node.outputs[1].clients) == 0:
            new = CAReduce(scal.maximum, axis)(node.inputs[0])
            copy_stack_trace(node.outputs[0], new)
            return [new, None]

        if len(node.outputs[0].clients) == 0:
            new = T.Argmax(axis)(node.inputs[0])
            copy_stack_trace(node.outputs[0], new)
            return [None, new]
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:15,代码来源:opt_uncanonicalize.py


示例16: local_abstract_batch_norm_train

def local_abstract_batch_norm_train(node):
    if not isinstance(node.op, AbstractBatchNormTrain):
        return None

    x, scale, bias, epsilon, running_average_factor = node.inputs[:5]
    axes = node.op.axes
    if min(axes) < 0 or max(axes) > x.ndim:
        return None
    if not isinstance(x.type, TensorType) or \
       not isinstance(scale.type, TensorType) or \
       not isinstance(bias.type, TensorType) or \
       not isinstance(epsilon.type, TensorType) or \
       not isinstance(running_average_factor.type, TensorType):
        return None
    # optional running_mean and running_var
    if len(node.inputs) > 5 and not isinstance(node.inputs[5].type, TensorType):
        return None
    if len(node.inputs) > 6 and not isinstance(node.inputs[6].type, TensorType):
        return None

    mean = x.mean(axes, keepdims=True)
    var = x.var(axes, keepdims=True)
    # The epsilon should not upcast the dtype.
    if var.dtype == 'float32' and epsilon.dtype == 'float64':
        epsilon = epsilon.astype('float32')
    invstd = T.inv(T.sqrt(var + epsilon))
    out = (x - mean) * (scale * invstd) + bias
    results = [out, mean, invstd]

    if len(node.inputs) > 5:
        running_mean = node.inputs[5]
        running_mean = running_mean * (1.0 - running_average_factor) + \
            mean * running_average_factor
        results.append(running_mean)
    if len(node.inputs) > 6:
        m = T.cast(T.prod(x.shape) / T.prod(scale.shape), theano.config.floatX)
        running_var = node.inputs[6]
        running_var = running_var * (1.0 - running_average_factor) + \
            (m / (m - 1)) * var * running_average_factor
        results.append(running_var)

    results = [T.patternbroadcast(r, r_orig.broadcastable)
               for (r, r_orig) in zip(results, node.outputs)]

    for var in theano.gof.graph.variables(node.inputs, results):
        if var not in node.inputs:
            copy_stack_trace(node.outputs[0], var)
    return results
开发者ID:HapeMask,项目名称:Theano,代码行数:48,代码来源:bn.py


示例17: local_1msigmoid

def local_1msigmoid(node):
    """
    1-sigm(x) -> sigm(-x)

    """
    if node.op == tensor.sub:
        sub_l, sub_r = node.inputs
        if len(sub_r.clients) > 1:
            return  # graph is using both sigm and 1-sigm
        if sub_r.owner and sub_r.owner.op == sigmoid:
            try:
                val_l = opt.get_scalar_constant_value(sub_l)
            except Exception:
                return
            if numpy.allclose(numpy.sum(val_l), 1):
                out = sigmoid(-sub_r.owner.inputs[0])
                copy_stack_trace([sub_r, node.outputs[0]], out)
                return [out]
开发者ID:12190143,项目名称:Theano,代码行数:18,代码来源:sigm.py


示例18: local_abstractconv_gemm

def local_abstractconv_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv2d):
        return None
    img, kern = node.inputs
    if not isinstance(img.type, TensorType) or \
       not isinstance(kern.type, TensorType):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1]
    rval = CorrMM(border_mode=node.op.border_mode,
                  subsample=node.op.subsample)(img, kern)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
开发者ID:12190143,项目名称:Theano,代码行数:18,代码来源:opt.py


示例19: local_abstractconv_gradinputs_gemm

def local_abstractconv_gradinputs_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv2d_gradInputs):
        return None
    kern, topgrad, shape = node.inputs
    if not isinstance(kern.type, TensorType) or \
       not isinstance(topgrad.type, TensorType):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1]
    rval = CorrMM_gradInputs(border_mode=node.op.border_mode,
                             subsample=node.op.subsample,
                             filter_dilation=node.op.filter_dilation)(kern, topgrad,
                                                                      shape)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
开发者ID:HHiroki,项目名称:Theano,代码行数:20,代码来源:opt.py


示例20: local_abstractconv_gradweight_gemm

def local_abstractconv_gradweight_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv2d_gradWeights):
        return None
    img, topgrad, shape = node.inputs
    if not isinstance(img.type, TensorType) or \
       not isinstance(topgrad.type, TensorType):
        return None

    rval = CorrMM_gradWeights(border_mode=node.op.border_mode,
                              subsample=node.op.subsample)(img, topgrad, shape)
    copy_stack_trace(node.outputs[0], rval)

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        rval = rval[:, :, ::-1, ::-1]
    rval = theano.tensor.patternbroadcast(rval, node.outputs[0].broadcastable)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
开发者ID:12190143,项目名称:Theano,代码行数:21,代码来源:opt.py



注:本文中的theano.gof.opt.copy_stack_trace函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python python25.all函数代码示例发布时间:2022-05-27
下一篇:
Python op.get_test_value函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap