• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python graph.clone函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.gof.graph.clone函数的典型用法代码示例。如果您正苦于以下问题:Python clone函数的具体用法?Python clone怎么用?Python clone使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了clone函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_input_dependency0

 def test_input_dependency0(self):
     x, y, z = inputs()
     a, d = add(x, y), div(x, y)
     e = mul(a, d)
     fn = perform_linker(FunctionGraph(*graph.clone([x, y, a],
                                                    [e]))).make_function()
     assert fn(1.0, 2.0, 9.0) == 4.5
开发者ID:MarcCote,项目名称:Theano,代码行数:7,代码来源:test_link.py


示例2: test_skiphole

 def test_skiphole(self):
     x,y,z = inputs()
     a = add(x,y)
     r = raise_err(a)
     e = add(r,a)
     fn = perform_linker(Env(*graph.clone([x, y,r], [e]))).make_function()
     assert fn(1.0,2.0,4.5) == 7.5
开发者ID:olivierverdier,项目名称:Theano,代码行数:7,代码来源:test_link.py


示例3: __init__

    def __init__(self, inputs, outputs, features=None, clone=True):
        """
        Create an FunctionGraph which operates on the subgraph bound by the inputs and
        outputs sets.

        This class keeps a pointer to the inputs and outputs, and also modifies
        them.

        #TODO: document what variables are[not] set in the FunctionGraph when a feature
        is added via the constructor.  How constructed is the FunctionGraph?

        :param clone: If true, we will clone the graph. This is
        useful to remove the constant cache problem.

        """
        if clone:
            inputs, outputs = graph.clone(inputs, outputs)

        self.execute_callbacks_time = 0
        self.execute_callbacks_times = {}

        if features is None:
            features = []

        # XXX: Unless I'm missing something (but there's no documentation,
        # so I probably am) this should be a set.
        self._features = []

        # All apply nodes in the subgraph defined by inputs and
        # outputs are cached in this field
        self.apply_nodes = set()

        # Ditto for variable nodes
        self.variables = set()

        self.inputs = list(inputs)
        self.outputs = outputs

        for f in features:
            self.attach_feature(f)
        self.attach_feature(toolbox.ReplaceValidate())

        for input in self.inputs:
            if input.owner is not None:
                raise ValueError("One of the provided inputs is the output of"
                                 "an already existing node. "
                                 "If that is okay, either discard that "
                                 "input's owner or use graph.clone.")
            self.__setup_r__(input)
            self.variables.add(input)

        self.__import_r__(outputs, reason="init")
        for i, output in enumerate(outputs):
            output.clients.append(('output', i))

        self.node_locks = {}
        self.variable_locks = {}
        self.profile = None
开发者ID:Dimitris0mg,项目名称:Theano,代码行数:58,代码来源:fg.py


示例4: test_not_destructive

 def test_not_destructive(self):
     # Checks that manipulating a cloned graph leaves the original unchanged.
     r1, r2, r5 = MyVariable(1), MyVariable(2), MyVariable(5)
     node = MyOp.make_node(MyOp.make_node(r1, r2).outputs[0], r5)
     _, new = clone([r1, r2, r5], node.outputs, False)
     new_node = new[0].owner
     new_node.inputs = MyVariable(7), MyVariable(8)
     assert self.str(inputs(new_node.outputs), new_node.outputs) == ["MyOp(R7, R8)"]
     assert self.str(inputs(node.outputs), node.outputs) == ["MyOp(MyOp(R1, R2), R5)"]
开发者ID:huamichaelchen,项目名称:Theano,代码行数:9,代码来源:test_graph.py


示例5: test_copy

 def test_copy(self):
     r1, r2, r5 = MyVariable(1), MyVariable(2), MyVariable(5)
     node = MyOp.make_node(r1, r2)
     node2 = MyOp.make_node(node.outputs[0], r5)
     _, new = clone([r1, r2, r5], node2.outputs, False)
     assert node2.outputs[0].type == new[0].type and node2.outputs[0] is not new[0] # the new output is like the old one but not the same object
     assert node2 is not new[0].owner # the new output has a new owner
     assert new[0].owner.inputs[1] is r5 # the inputs are not copied
     assert new[0].owner.inputs[0].type == node.outputs[0].type and new[0].owner.inputs[0] is not node.outputs[0] # check that we copied deeper too
开发者ID:317070,项目名称:Theano,代码行数:9,代码来源:test_graph.py


示例6: test_constant

    def test_constant(self):
        r1, r2, r5 = MyVariable(1), MyVariable(2), MyVariable(5)
        node = MyOp.make_node(MyOp.make_node(r1, r2).outputs[0], r5)
        _, new = clone([r1, r2, r5], node.outputs, False)
        new_node = new[0].owner
        new_node.inputs = MyVariable(7), MyVariable(8)
        c1 = tensor.constant(1.5)

        i, o = clone([c1], [c1])
        assert i[0] is not c1 and o[0] is not c1

        i, o = clone([c1], [c1], False)
        assert i[0] is c1 and o[0] is c1

        i, o = clone([c1], [c1], True, False)
        assert i[0] is not c1 and o[0] is not c1

        i, o = clone([c1], [c1], False, True)
        assert i[0] is c1 and o[0] is c1
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:19,代码来源:test_graph.py


示例7: test_long_destroyers_loop

def test_long_destroyers_loop():
    x, y, z = inputs()
    e = dot(dot(add_in_place(x,y), add_in_place(y,z)), add(z,x))
    g = Env([x,y,z], [e])
    consistent(g)
    OpSubOptimizer(add, add_in_place).optimize(g)
    consistent(g)
    assert str(g) != "[Dot(Dot(AddInPlace(x, y), AddInPlace(y, z)), AddInPlace(z, x))]" # we don't want to see that!
    e2 = dot(dot(add_in_place(x,y), add_in_place(y,z)), add_in_place(z,x))
    try:
        g2 = Env(*graph.clone([x,y,z], [e2]))
        raise Exception("Shouldn't have reached this point.")
    except InconsistencyError:
        pass
开发者ID:HaniAlmousli,项目名称:Theano,代码行数:14,代码来源:test_destroyhandler.py


示例8: __init__

    def __init__(self, inputs, outputs, features=None, clone=True):

        if clone:
            inputs, outputs = graph.clone(inputs, outputs)

        self.execute_callbacks_time = 0
        self.execute_callbacks_times = {}

        if features is None:
            features = []

        # XXX: Unless I'm missing something (but there's no documentation,
        # so I probably am) this should be a set.
        self._features = []

        # All apply nodes in the subgraph defined by inputs and
        # outputs are cached in this field
        self.apply_nodes = set()

        # Ditto for variable nodes.
        # It must contain all fgraph.inputs and all apply_nodes
        # outputs even if they aren't used in the graph.
        self.variables = set()

        self.inputs = list(inputs)
        self.outputs = outputs

        for f in features:
            self.attach_feature(f)
        self.attach_feature(toolbox.ReplaceValidate())

        for input in self.inputs:
            if input.owner is not None:
                raise ValueError("One of the provided inputs is the output of"
                                 "an already existing node. "
                                 "If that is okay, either discard that "
                                 "input's owner or use graph.clone.")
            self.__setup_r__(input)
            self.variables.add(input)

        for output in outputs:
            self.__import_r__(output, reason="init")
        for i, output in enumerate(outputs):
            output.clients.append(('output', i))

        self.node_locks = {}
        self.variable_locks = {}
        self.profile = None
开发者ID:zhqi77,项目名称:Theano,代码行数:48,代码来源:fg.py


示例9: test_accurate

 def test_accurate(self):
     r1, r2 = MyVariable(1), MyVariable(2)
     node = MyOp.make_node(r1, r2)
     _, new = clone([r1, r2], node.outputs, False)
     assert self.str([r1, r2], new) == ["MyOp(R1, R2)"]
开发者ID:huamichaelchen,项目名称:Theano,代码行数:5,代码来源:test_graph.py


示例10: make_thunk

    def make_thunk(self, node, storage_map, compute_map, no_recycling):
        """
        :param node: something previously returned by self.make_node

        :param storage_map: dict variable -> one-element-list where a computed
                value for this variable may be found.

        :param compute_map: dict variable -> one-element-list where a boolean
                value will be found.  The boolean indicates whether the
                variable's storage_map container contains a valid value (True)
                or if it has not been computed yet (False).

        :param no_recycling: list of variables for which it is forbidden to
                reuse memory allocated by a previous call.

        :note: If the thunk consults the storage_map on every call, it is safe
            for it to ignore the no_recycling argument, because elements of the
            no_recycling list will have a value of None in the storage map.  If
            the thunk can potentially cache return values (like CLinker does),
            then it must not do so for variables in the no_recycling list.
        """
        logger = logging.getLogger('theano.gof.op.Op')

        node_input_storage = [storage_map[r] for r in node.inputs]
        node_output_storage = [storage_map[r] for r in node.outputs]
        node_input_compute = [compute_map[r] for r in node.inputs]
        node_output_compute = [compute_map[r] for r in node.outputs]
        #logger.debug('Compiling node %i of graph' % node_idx)
        if self._op_use_c_code:
            try:
                e = FunctionGraph(*graph.clone(node.inputs, node.outputs))

                e_no_recycling = [new_o
                        for (new_o, old_o) in zip(e.outputs, node.outputs)
                        if old_o in no_recycling]
                cl = theano.gof.cc.CLinker().accept(e,
                        no_recycling=e_no_recycling)

                logger.debug('Trying CLinker.make_thunk')
                outputs = cl.make_thunk(input_storage=node_input_storage,
                                        output_storage=node_output_storage)
                fill_storage, node_input_filters, node_output_filters = outputs

                def rval():
                    fill_storage()
                    for o in node.outputs:
                        compute_map[o][0] = True

                rval.cthunk = fill_storage.cthunk
                rval.inputs = node_input_storage
                rval.outputs = node_output_storage
                rval.lazy = False
                return rval
                # the next line does nothing, but pyflakes is too
                # stupid to realize the def rval below is not a
                # redefinition unless I include this
                del rval
            except (NotImplementedError, utils.MethodNotDefined):
                logger.debug('Falling back on perform')

        # condition: either there was no c_code, or it failed

        p = node.op.perform
        # default arguments are stored in the closure of `rval`

        def rval(p=p, i=node_input_storage, o=node_output_storage, n=node):
            r = p(n, [x[0] for x in i], o)
            for o in node.outputs:
                compute_map[o][0] = True
            return r

        rval.inputs = node_input_storage
        rval.outputs = node_output_storage
        rval.perform = p
        rval.lazy = False
        return rval
开发者ID:SinaHonari,项目名称:Theano,代码行数:76,代码来源:op.py


示例11: __init__

    def __init__(self, inputs, outputs, features=None, clone=True,
                 update_mapping=None):
        """
        Create an FunctionGraph which operates on the subgraph bound by the
        inputs and outputs sets.

        Parameters
        ----------
        inputs : list of variables
            Inputs nodes of the graph, usually declared by the user
        outputs : list of variables
            Outputs nodes of the graph.
        clone : boolean
            If true, we will clone the graph. This is useful to remove the
            constant cache problem.
        update_mapping : dictionnary
            Mapping between the inputs with updates and the outputs
            corresponding to their updates.
        """

        if clone:
            inputs, outputs = graph.clone(inputs, outputs)

        self.execute_callbacks_time = 0
        self.execute_callbacks_times = {}

        if features is None:
            features = []

        # XXX: Unless I'm missing something (but there's no documentation,
        # so I probably am) this should be a set.
        self._features = []

        # All apply nodes in the subgraph defined by inputs and
        # outputs are cached in this field
        self.apply_nodes = set()

        # Ditto for variable nodes.
        # It must contain all fgraph.inputs and all apply_nodes
        # outputs even if they aren't used in the graph.
        self.variables = set()

        self.inputs = list(inputs)
        self.outputs = outputs

        for f in features:
            self.attach_feature(f)
        self.attach_feature(toolbox.ReplaceValidate())

        for input in self.inputs:
            if input.owner is not None:
                raise ValueError("One of the provided inputs is the output of"
                                 "an already existing node. "
                                 "If that is okay, either discard that "
                                 "input's owner or use graph.clone.")
            self.__setup_r__(input)
            self.variables.add(input)

        for output in outputs:
            self.__import_r__(output, reason="init")
        for i, output in enumerate(outputs):
            output.clients.append(('output', i))

        self.profile = None
        self.update_mapping = update_mapping
开发者ID:chinnadhurai,项目名称:Theano,代码行数:65,代码来源:fg.py



注:本文中的theano.gof.graph.clone函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python graph.inputs函数代码示例发布时间:2022-05-27
下一篇:
Python compilelock.release_lock函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap