本文整理汇总了Python中tftb.generators.fmlin函数的典型用法代码示例。如果您正苦于以下问题:Python fmlin函数的具体用法?Python fmlin怎么用?Python fmlin使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了fmlin函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_stft_linearity
def test_stft_linearity(self):
"""Test the linearity property of the Fourier transform."""
x = fmlin(128, 0.0, 0.2)[0]
y = fmlin(128, 0.3, 0.5)[0]
h = x + y
tfr, _, _ = linear.ShortTimeFourierTransform(h).run()
tfrx, _, _ = linear.ShortTimeFourierTransform(x).run()
tfry, _, _ = linear.ShortTimeFourierTransform(y).run()
np.testing.assert_allclose(tfr, tfrx + tfry)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:9,代码来源:test_linear.py
示例2: test_ideal_tfr
def test_ideal_tfr(self):
"""Test if the ideal TFR can be found using the instantaneous frequency
laws."""
_, iflaw1 = fmlin(128, 0.0, 0.2)
_, iflaw2 = fmlin(128, 0.3, 0.5)
iflaws = np.c_[iflaw1, iflaw2].T
tfr, _, _ = pproc.ideal_tfr(iflaws)
tfr[tfr == 1] = 255
tfr = tfr.astype(np.uint8)
hspace, angles, dists = hough_line(tfr)
for x in hough_line_peaks(hspace, angles, dists):
self.assertEqual(len(x), 2)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:12,代码来源:test_postprocessing.py
示例3: test_spectrogram_energy_conservation
def test_spectrogram_energy_conservation(self):
"""Test the energy conservation property of the spectrogram."""
signal, _ = fmlin(128, 0.1, 0.4)
window = kaiser(17, 3 * np.pi)
tfr, ts, freqs = cohen.Spectrogram(signal, n_fbins=64, fwindow=window).run()
e_sig = (np.abs(signal) ** 2).sum()
self.assertAlmostEqual(tfr.sum().sum() / 64, e_sig)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:7,代码来源:test_cohen.py
示例4: test_stft_conjugation
def test_stft_conjugation(self):
x = fmlin(128, 0, 0.2)[0]
h = np.conjugate(x)
lhs, _, _ = linear.ShortTimeFourierTransform(h).run()
rhs, _, _ = linear.ShortTimeFourierTransform(x[::-1]).run()
rhs = np.conjugate(rhs)
np.testing.assert_allclose(lhs, rhs)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:7,代码来源:test_linear.py
示例5: test_spectrogram_linearity
def test_spectrogram_linearity(self):
signal, _ = fmlin(128, 0.1, 0.4)
window = kaiser(17, 3 * np.pi)
tfr1, _, _ = cohen.spectrogram(signal, n_fbins=64, window=window)
tfr2, _, _ = cohen.spectrogram(signal * 2, n_fbins=64, window=window)
x = np.sum(np.sum(tfr2))
y = np.sum(np.sum(tfr1))
self.assertEqual(x / y, 4)
开发者ID:dafx,项目名称:pytftb,代码行数:8,代码来源:test_cohen.py
示例6: test_stft_translation
def test_stft_translation(self):
"""Test the time-shift property of the Fourier transform."""
x = fmlin(128, 0.0, 0.2)[0]
tfrx, _, freqs = linear.ShortTimeFourierTransform(x).run()
x_shifted = np.roll(x, 64)
tfrxs, _, _ = linear.ShortTimeFourierTransform(x_shifted).run()
f_mul = np.exp(-1j * 2 * np.pi * 64 * freqs)
np.testing.assert_allclose(tfrxs, f_mul * tfrx)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:8,代码来源:test_linear.py
示例7: test_sigmerge
def test_sigmerge(self):
"""Test merging of signals with a given SNR."""
signal = fmlin(128)[0]
noise = np.random.randn(128,)
gamma = 0.1
x = utils.sigmerge(signal, noise, gamma)
h_est = np.linalg.norm(signal) / np.linalg.norm(noise) * 10 ** (-gamma / 20)
x_hat = signal + h_est * noise
np.testing.assert_allclose(x, x_hat)
开发者ID:jaidevd,项目名称:pytftb,代码行数:9,代码来源:test_utils.py
示例8: test_sigmerge
def test_sigmerge(self):
"""Test merging of signals with a given SNR."""
signal = fmlin(128)[0]
noise = np.random.randn(128,)
noisy_signal = utils.sigmerge(signal, noise)
gamma_estimate = np.sqrt(signal.var() / noise.var())
np.testing.assert_allclose(noisy_signal,
signal + gamma_estimate * noise, rtol=1e-2,
atol=1e-2)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:9,代码来源:test_utils.py
示例9: test_stft_modulation
def test_stft_modulation(self):
"""Test the modulation / frequency shifting property of STFT."""
x = fmlin(128, 0.0, 0.2)[0]
tfrx, _, _ = linear.ShortTimeFourierTransform(x).run()
f_0 = 0.3
h = np.exp(1j * 2 * np.pi * f_0 * np.arange(128)) * x
tfrh, _, _ = linear.ShortTimeFourierTransform(h).run()
tfrx_shifted = np.roll(tfrx, int(np.ceil(128 * 0.3)), axis=0)
self.assert_tfr_equal(tfrx_shifted, tfrh, tol=0.95)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:9,代码来源:test_linear.py
示例10: test_spectrogram_linearity
def test_spectrogram_linearity(self):
"""Test the linearity property of the spectrogram."""
signal, _ = fmlin(128, 0.1, 0.4)
window = kaiser(17, 3 * np.pi)
tfr1, _, _ = cohen.Spectrogram(signal, n_fbins=64,
fwindow=window).run()
tfr2, _, _ = cohen.Spectrogram(signal * 2, n_fbins=64,
fwindow=window).run()
x = np.sum(np.sum(tfr2))
y = np.sum(np.sum(tfr1))
self.assertEqual(x / y, 4)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:11,代码来源:test_cohen.py
示例11: test_spectrogram_time_invariance
def test_spectrogram_time_invariance(self):
"""Test the time invariance property of the spectrogram."""
signal, _ = fmlin(128, 0.1, 0.4)
window = kaiser(17, 3 * np.pi)
tfr, ts, freqs = cohen.Spectrogram(signal, n_fbins=64, fwindow=window).run()
shift = 64
timeshifted_signal = np.roll(signal, shift)
timeshifted_tfr, _, _ = cohen.Spectrogram(timeshifted_signal, n_fbins=64,
fwindow=window).run()
rolled_tfr = np.roll(tfr, shift, axis=1)
# the time invariance property holds mostly qualitatively. The shifted
# TFR is not numerically indentical to the rolled TFR, having
# differences at the edges; so clip with two TFRs where there are
# discontinuities in the TFR.
edge = 10
xx = np.c_[timeshifted_tfr[:, edge:(shift - edge)],
timeshifted_tfr[:, (shift + edge):-edge]]
yy = np.c_[rolled_tfr[:, edge:(shift - edge)],
rolled_tfr[:, (shift + edge):-edge]]
np.testing.assert_allclose(xx, yy)
开发者ID:fmarrabal,项目名称:pytftb,代码行数:20,代码来源:test_cohen.py
示例12: amgauss
Instantaneous frequency and group delay are very closely related. The former is
the frequency of a signal at a given instant, and the latter is the time delay
of frequency components. As this example shows, they coincide with each other
for a given signal when the time bandwidth product of the signal is
sufficiently high.
"""
import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import amgauss, fmlin
from tftb.processing import loctime, locfreq, inst_freq, group_delay
time_instants = np.arange(2, 256)
sig1 = amgauss(256, 128, 90) * fmlin(256)[0]
tm, T1 = loctime(sig1)
fm, B1 = locfreq(sig1)
ifr1 = inst_freq(sig1, time_instants)[0]
f1 = np.linspace(0, 0.5 - 1.0 / 256, 256)
gd1 = group_delay(sig1, f1)
plt.subplot(211)
plt.plot(time_instants, ifr1, '*', label='inst_freq')
plt.plot(gd1, f1, '-', label='group delay')
plt.xlim(0, 256)
plt.grid(True)
plt.legend()
plt.title("Time-Bandwidth product: {0}".format(T1 * B1))
plt.xlabel('Time')
plt.ylabel('Normalized Frequency')
开发者ID:dhuadaar,项目名称:pytftb,代码行数:30,代码来源:plot_2_4_grp_delay_inst_freq_comprison.py
示例13: min
points = np.arange(-min([lg, signal.shape[0] - ti - tau]),
min([lg, ti - 1 - tau]) + 1)
g2 = twindow[lg + points]
g2 = g2 / np.sum(g2)
R = np.sum(g2 * signal[ti + tau - points - 1] * np.conj(signal[ti - tau - points - 1]))
tfr[1 + tau, icol] = fwindow[lh + tau + 1] * R
R = np.sum(g2 * signal[ti - tau - points - 1] * np.conj(signal[ti + tau - points - 1]))
tfr[freq_bins - tau - 1, icol] = fwindow[lh - tau + 1] * R
tau = np.round(freq_bins / 2.0)
if (ti <= signal.shape[0] - tau) and (ti >= tau + 1) and (tau <= lh):
points = np.arange(-min([lg, signal.shape[0] - ti - tau]),
min([lg, ti - 1 - tau]) + 1)
g2 = twindow[lg + 1 + points]
g2 = g2 / np.sum(g2)
_x = np.sum(g2 * signal[ti + tau - points] * np.conj(signal[ti - tau - points]))
_x *= fwindow[lh + tau + 1]
_y = np.sum(g2 * signal[ti - tau - points] * np.conj(signal[ti + tau - points]))
_y *= fwindow[lh - tau + 1]
tfr[tau, icol] = (_x + _y) * 0.5
tfr = np.fft.fft(tfr, axis=0)
return np.real(tfr)
if __name__ == '__main__':
from tftb.generators import fmlin
sig = fmlin(128, 0.1, 0.4)[0]
spec = PseudoWignerVilleDistribution(sig)
tfr, _, _ = spec.run()
from scipy.io import savemat
savemat("/tmp/foo.mat", dict(tfr2=tfr))
开发者ID:markyoder,项目名称:pytftb,代码行数:30,代码来源:cohen.py
示例14: sigmerge
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <[email protected]>
#
# Distributed under terms of the MIT license.
"""
Example showing use of Hough transform on a Wigner-Ville distribution.
"""
import numpy as np
from tftb.generators import noisecg, sigmerge, fmlin
from tftb.processing.cohen import WignerVilleDistribution
from tftb.processing.postprocessing import hough_transform
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
N = 64
sig = sigmerge(fmlin(N, 0, 0.3)[0], noisecg(N), 1)
tfr, _, _ = WignerVilleDistribution(sig).run()
ht, rho, theta = hough_transform(tfr, N, N)
theta, rho = np.meshgrid(theta, rho)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_wireframe(theta, rho, ht)
ax.set_xlabel('Theta')
ax.set_ylabel('Rho')
plt.show()
开发者ID:dafx,项目名称:pytftb,代码行数:30,代码来源:5_4_2_hough_noisy_chirp.py
示例15: amgauss
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <[email protected]>
#
# Distributed under terms of the MIT license.
"""
"""
from tftb.generators import amgauss, fmlin
import numpy as np
import matplotlib.pyplot as plt
z = amgauss(128, 50.0, 30.0) * fmlin(128, 0.05, 0.3, 50)[0]
plt.plot(np.real(z))
plt.xlim(0, 128)
plt.grid()
plt.title('Linear Frequency Modulation')
plt.show()
开发者ID:dafx,项目名称:pytftb,代码行数:22,代码来源:fmlin.py
示例16: fmlin
# Distributed under terms of the MIT license.
"""
Example from section 2.7 of the tutorial.
Short time Fourier transform of a multi-component nonstationary signal.
"""
from tftb.generators import fmlin
from tftb.processing.linear import ShortTimeFourierTransform
import matplotlib.pyplot as plt
from scipy.signal import hamming
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
N = 128
x1, _ = fmlin(N, 0, 0.2)
x2, _ = fmlin(N, 0.3, 0.5)
x = x1 + x2
n_fbins = 128
window = hamming(33)
tfr, _, _ = ShortTimeFourierTransform(x, timestamps=None, n_fbins=n_fbins,
fwindow=window).run()
tfr = tfr[:64, :]
threshold = np.amax(np.abs(tfr)) * 0.05
tfr[np.abs(tfr) <= threshold] = 0.0 + 1j * 0.0
tfr = np.abs(tfr) ** 2
t = np.arange(tfr.shape[1])
f = np.linspace(0, 0.5, tfr.shape[0])
T, F = np.meshgrid(t, f)
开发者ID:dafx,项目名称:pytftb,代码行数:31,代码来源:2_7_multicomp_nonstat_stft.py
示例17: fmlin
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <[email protected]>
#
# Distributed under terms of the MIT license.
"""
Examples from section 3.4.1 of the tutorial.
"""
from tftb.generators import fmlin
from tftb.processing.cohen import Spectrogram
import numpy as np
import matplotlib.pyplot as plt
sig = fmlin(128, 0, 0.3)[0] + fmlin(128, 0.2, 0.5)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, 63) ** 2)
spec = Spectrogram(sig, fwindow=window, n_fbins=128)
spec.run()
spec.plot(show_tf=True, cmap=plt.cm.gray)
开发者ID:dafx,项目名称:pytftb,代码行数:22,代码来源:3_4_1_distant_components_long_gaussian.py
示例18: test_spectrogram_reality
def test_spectrogram_reality(self):
"""Test the reality property of the spectrogram."""
signal, _ = fmlin(128, 0.1, 0.4)
window = kaiser(17, 3 * np.pi)
tfr, _, _ = cohen.Spectrogram(signal, n_fbins=64, fwindow=window).run()
self.assertTrue(np.all(np.isreal(tfr)))
开发者ID:fmarrabal,项目名称:pytftb,代码行数:6,代码来源:test_cohen.py
示例19: fmlin
#
# Copyright © 2015 jaidev <[email protected]>
#
# Distributed under terms of the MIT license.
"""
==================================================
Linear Frequency and Gaussian Amplitude Modulation
==================================================
Generate a mono-component nonstationary signal with linear frequency
modulation and Gaussian amplitude modulation.
"""
from tftb.generators import fmlin, amgauss
from numpy import real
import matplotlib.pyplot as plt
fm, _ = fmlin(256)
am = amgauss(256)
signal = fm * am
plt.plot(real(signal))
plt.xlabel("Time")
plt.ylabel("Real part")
plt.title("Linear Frequency, Gaussian Amplitude")
plt.xlim(0, 256)
plt.grid()
plt.show()
开发者ID:markyoder,项目名称:pytftb,代码行数:30,代码来源:plot_2_6_monocomp_nonstat_linfreq_gaussamp.py
示例20: test_spectrogram_non_negativity
def test_spectrogram_non_negativity(self):
"""Test that the spectrogram is non negative."""
signal, _ = fmlin(128, 0.1, 0.4)
window = kaiser(17, 3 * np.pi)
tfr, _, _ = cohen.Spectrogram(signal, n_fbins=64, fwindow=window).run()
self.assertTrue(np.all(tfr >= 0))
开发者ID:fmarrabal,项目名称:pytftb,代码行数:6,代码来源:test_cohen.py
注:本文中的tftb.generators.fmlin函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论