• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utils.get_incoming_shape函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tflearn.utils.get_incoming_shape函数的典型用法代码示例。如果您正苦于以下问题:Python get_incoming_shape函数的具体用法?Python get_incoming_shape怎么用?Python get_incoming_shape使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了get_incoming_shape函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: time_distributed

def time_distributed(incoming, fn, args=None, scope=None):
    """ Time Distributed.

    This layer applies a function to every timestep of the input tensor. The
    custom function first argument must be the input tensor at every timestep.
    Additional parameters for the custom function may be specified in 'args'
    argument (as a list).

    Examples:
        ```python
        # Applying a fully_connected layer at every timestep
        x = time_distributed(input_tensor, fully_connected, [64])

        # Using a conv layer at every timestep with a scope
        x = time_distributed(input_tensor, conv_2d, [64, 3], scope='tconv')
        ```

    Input:
        (3+)-D Tensor [samples, timestep, input_dim].

    Output:
        (3+)-D Tensor [samples, timestep, output_dim].

    Arguments:
        incoming: `Tensor`. The incoming tensor.
        fn: `function`. A function to apply at every timestep. This function
            first parameter must be the input tensor per timestep. Additional
            parameters may be specified in 'args' argument.
        args: `list`. A list of parameters to use with the provided function.
        scope: `str`. A scope to give to each timestep tensor. Useful when
            sharing weights. Each timestep tensor scope will be generated
            as 'scope'-'i' where i represents the timestep id. Note that your
            custom function will be required to have a 'scope' parameter.

    Returns:
        A Tensor.

    """
    if not args: args = list()
    assert isinstance(args, list), "'args' must be a list."

    if not isinstance(incoming, tf.Tensor):
        incoming = tf.transpose(tf.stack(incoming), [1, 0, 2])

    input_shape = utils.get_incoming_shape(incoming)
    timestep = input_shape[1]
    x = tf.unstack(incoming, axis=1)
    if scope:
        x = [fn(x[i], scope=scope+'-'+str(i), *args)
             for i in range(timestep)]
    else:
        x = [fn(x[i], *args) for i in range(timestep)]
    try:
      x = map(lambda t: tf.reshape(t, [-1, 1]+utils.get_incoming_shape(t)[1:]), x)
    except:
      x = list(map(lambda t: tf.reshape(t, [-1, 1]+utils.get_incoming_shape(t)[1:]), x))
    return tf.concat(1, x)
开发者ID:rlugojr,项目名称:tflearn,代码行数:57,代码来源:core.py


示例2: flatten

def flatten(incoming, name="Flatten"):
    """ Flatten.

    Flatten the incoming Tensor.

    Input:
        (2+)-D `Tensor`.

    Output:
        2-D `Tensor` [batch, flatten_dims].

    Arguments:
        incoming: `Tensor`. The incoming tensor.

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    dims = int(np.prod(input_shape[1:]))
    return reshape(incoming, [-1, dims], name)
开发者ID:21hub,项目名称:tflearn,代码行数:19,代码来源:core.py


示例3: flatten

def flatten(incoming, name="Flatten"):
    """ Flatten.

    Flatten the incoming Tensor.

    Input:
        (2+)-D `Tensor`.

    Output:
        2-D `Tensor` [batch, flatten_dims].

    Arguments:
        incoming: `Tensor`. The incoming tensor.

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    dims = int(np.prod(input_shape[1:]))
    x = reshape(incoming, [-1, dims], name)

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, x)

    return x
开发者ID:igormq,项目名称:tflearn,代码行数:24,代码来源:core.py


示例4: fully_connected

def fully_connected(incoming, n_units, activation='linear', bias=True,
                    weights_init='truncated_normal', bias_init='zeros',
                    regularizer=None, weight_decay=0.001, trainable=True,
                    restore=True, reuse=False, scope=None,
                    name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias, str):
                bias_init = initializations.get(bias_init)()
            b = va.variable('b', shape=[n_units], initializer=bias_init,
                            trainable=trainable, restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)

        if isinstance(activation, str):
            inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
开发者ID:igormq,项目名称:tflearn,代码行数:99,代码来源:core.py


示例5: highway

def highway(incoming, n_units, activation='linear', transform_dropout=None,
            weights_init='truncated_normal', bias_init='zeros',
            regularizer=None, weight_decay=0.001, trainable=True,
            restore=True, reuse=False, scope=None,
            name="FullyConnectedHighway"):
    """ Fully Connected Highway.

    A fully connected highway network layer, with some inspiration from
    [https://github.com/fomorians/highway-fcn](https://github.com/fomorians/highway-fcn).

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        transform_dropout: `float`: Keep probability on the highway transform gate.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnectedHighway'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        W_t: `Tensor`. Variable representing units weights for transform gate.
        b: `Tensor`. Variable representing biases.
        b_t: `Tensor`. Variable representing biases for transform gate.

    Links:
        [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387)

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        if isinstance(bias_init, str):
            bias_init = initializations.get(bias_init)()
        b = va.variable('b', shape=[n_units], initializer=bias_init,
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        # Weight and bias for the transform gate
        W_T = va.variable('W_T', shape=[n_inputs, n_units],
                          regularizer=None, initializer=W_init,
                          trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W_T)

        b_T = va.variable('b_T', shape=[n_units],
                          initializer=tf.constant_initializer(-1),
                          trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b_T)

        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            incoming = tf.reshape(incoming, [-1, n_inputs])

        if isinstance(activation, str):
            activation = activations.get(activation)
        elif hasattr(activation, '__call__'):
            activation = activation
        else:
            raise ValueError("Invalid Activation.")

        H = activation(tf.matmul(incoming, W) + b)
        T = tf.sigmoid(tf.matmul(incoming, W_T) + b_T)
#.........这里部分代码省略.........
开发者ID:igormq,项目名称:tflearn,代码行数:101,代码来源:core.py


示例6: single_unit

def single_unit(incoming, activation='linear', bias=True, trainable=True,
                restore=True, reuse=False, scope=None, name="Linear"):
    """ Single Unit.

    A single unit (Linear) Layer.

    Input:
        1-D Tensor [samples]. If not 2D, input will be flatten.

    Output:
        1-D Tensor [samples].

    Arguments:
        incoming: `Tensor`. Incoming Tensor.
        activation: `str` (name) or `function`. Activation applied to this
            layer (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'Linear'.

    Attributes:
        W: `Tensor`. Variable representing weight.
        b: `Tensor`. Variable representing bias.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W = va.variable('W', shape=[n_inputs],
                        initializer=tf.constant_initializer(np.random.randn()),
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            b = va.variable('b', shape=[n_inputs],
                            initializer=tf.constant_initializer(np.random.randn()),
                            trainable=trainable, restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 1:
            inference = tf.reshape(inference, [-1])

        inference = tf.mul(inference, W)
        if b: inference = tf.add(inference, b)

        if isinstance(activation, str):
            inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
开发者ID:igormq,项目名称:tflearn,代码行数:78,代码来源:core.py


示例7: regression

def regression(incoming, placeholder=None, optimizer='adam',
               loss='categorical_crossentropy', metric='default',
               learning_rate=0.001, dtype=tf.float32, batch_size=64,
               shuffle_batches=True, to_one_hot=False, n_classes=None,
               trainable_vars=None, restore=True, op_name=None, name=None):
    """ Regression.

    The regression layer is used in TFLearn to apply a regression (linear or
    logistic) to the provided input. It requires to specify a TensorFlow
    gradient descent optimizer 'optimizer' that will minimize the provided
    loss function 'loss' (which calculate the errors). A metric can also be
    provided, to evaluate the model performance.

    A 'TrainOp' is generated, holding all information about the optimization
    process. It is added to TensorFlow collection 'tf.GraphKeys.TRAIN_OPS'
    and later used by TFLearn 'models' classes to perform the training.

    An optional placeholder 'placeholder' can be specified to use a custom
    TensorFlow target placeholder instead of creating a new one. The target
    placeholder is added to the 'tf.GraphKeys.TARGETS' TensorFlow
    collection, so that it can be retrieved later.

    Additionaly, a list of variables 'trainable_vars' can be specified,
    so that only them will be updated when applying the backpropagation
    algorithm.

    Input:
        2-D Tensor Layer.

    Output:
        2-D Tensor Layer (Same as input).

    Arguments:
        incoming: `Tensor`. Incoming 2-D Tensor.
        placeholder: `Tensor`. This regression target (label) placeholder.
            If 'None' provided, a placeholder will be added automatically.
            You can retrieve that placeholder through graph key: 'TARGETS',
            or the 'placeholder' attribute of this function's returned tensor.
        optimizer: `str` (name), `Optimizer` or `function`. Optimizer to use.
            Default: 'adam' (Adaptive Moment Estimation).
        loss: `str` (name) or `function`. Loss function used by this layer
            optimizer. Default: 'categorical_crossentropy'.
        metric: `str`, `Metric` or `function`. The metric to be used.
            Default: 'default' metric is 'accuracy'. To disable metric
            calculation, set it to 'None'.
        learning_rate: `float`. This layer optimizer's learning rate.
        dtype: `tf.types`. This layer placeholder type. Default: tf.float32.
        batch_size: `int`. Batch size of data to use for training. tflearn
            supports different batch size for every optimizers. Default: 64.
        shuffle_batches: `bool`. Shuffle or not this optimizer batches at
            every epoch. Default: True.
        to_one_hot: `bool`. If True, labels will be encoded to one hot vectors.
            'n_classes' must then be specified.
        n_classes: `int`. The total number of classes. Only required when using
            'to_one_hot' option.
        trainable_vars: list of `Variable`. If specified, this regression will
            only update given variable weights. Else, all trainale variable
            are going to be updated.
        restore: `bool`. If False, variables related to optimizers such
            as moving averages will not be restored when loading a
            pre-trained model.
        op_name: A name for this layer optimizer (optional).
            Default: optimizer op name.
        name: A name for this layer's placeholder scope.

    Attributes:
        placeholder: `Tensor`. Placeholder for feeding labels.

    """

    input_shape = utils.get_incoming_shape(incoming)

    if placeholder is None:
        pscope = "TargetsData" if not name else name
        with tf.name_scope(pscope):
            placeholder = tf.placeholder(shape=input_shape, dtype=dtype, name="Y")

    tf.add_to_collection(tf.GraphKeys.TARGETS, placeholder)

    if to_one_hot:
        if n_classes is None:
            raise Exception("'n_classes' is required when using 'to_one_hot'.")
        placeholder = core.one_hot_encoding(placeholder, n_classes)

    step_tensor = None
    # Building Optimizer
    if isinstance(optimizer, str):
        _opt = optimizers.get(optimizer)(learning_rate)
        op_name = op_name if op_name else type(_opt).__name__
        _opt.build()
        optimizer = _opt.get_tensor()
    elif isinstance(optimizer, optimizers.Optimizer):
        op_name = op_name if op_name else type(optimizer).__name__
        if optimizer.has_decay:
            step_tensor = tf.Variable(0., name="Training_step",
                                      trainable=False)
        optimizer.build(step_tensor)
        optimizer = optimizer.get_tensor()
    elif hasattr(optimizer, '__call__'):
        try:
#.........这里部分代码省略.........
开发者ID:asabovici,项目名称:tflearn,代码行数:101,代码来源:estimator.py


示例8: fully_connected

def fully_connected(incoming, n_units, activation='linear', bias=True,
                    weights_init='truncated_normal', bias_init='zeros',
                    regularizer=None, weight_decay=0.001, trainable=True,
                    restore=True, name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `Tensor`. Activation applied to this layer.
            (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
       regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
       weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
       trainable: `bool`. If True, weights will be trainable.
       restore: `bool`. If True, this layer weights will be restored when
            loading a model
       name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.name_scope(name) as scope:

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable(scope + 'W', shape=[n_inputs, n_units],
                        regularizer=W_regul, initializer=W_init,
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W)

        b = None
        if bias:
            b_init = initializations.get(bias_init)()
            b = va.variable(scope + 'b', shape=[n_units],
                            initializer=b_init, trainable=trainable,
                            restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)
        inference = activations.get(activation)(inference)

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    return inference
开发者ID:chizhizhen,项目名称:tflearn,代码行数:81,代码来源:core.py


示例9: single_unit

def single_unit(incoming, activation='linear', bias=True, trainable=True,
                restore=True, name="Linear"):
    """ Single Unit.

    A single unit (Linear) Layer.

    Input:
        1-D Tensor [samples]. If not 2D, input will be flatten.

    Output:
        1-D Tensor [samples].

    Arguments:
        incoming: `Tensor`. Incoming Tensor.
        activation: `str` (name) or `Tensor`. Activation applied to this layer.
            (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        name: A name for this layer (optional). Default: 'Dense'.

    Attributes:
        W: `Tensor`. Variable representing weight.
        b: `Tensor`. Variable representing bias.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.name_scope(name) as scope:

        W = va.variable(scope + 'W', shape=[n_inputs],
                        initializer=tf.constant_initializer(np.random.randn()),
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W)

        b = None
        if bias:
            b = va.variable(scope + 'b', shape=[n_inputs],
                            initializer=tf.constant_initializer(np.random.randn()),
                            trainable=trainable, restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 1:
            inference = tf.reshape(inference, [-1])

        inference = tf.mul(inference, W)
        if b: inference = tf.add(inference, b)
        inference = activations.get(activation)(inference)

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    return inference
开发者ID:chizhizhen,项目名称:tflearn,代码行数:63,代码来源:core.py


示例10: regression

def regression(incoming, placeholder=None, optimizer='adam',
               loss='categorical_crossentropy', metric='default',
               learning_rate=0.001, dtype=tf.float32, batch_size=64,
               shuffle_batches=True, trainable_vars=None, op_name=None,
               name=None):
    """ Regression.

    Input:
        2-D Tensor Layer.

    Output:
        2-D Tensor Layer (Same as input).

    Arguments:
        incoming: `Tensor`. Incoming 2-D Tensor.
        placeholder: `Tensor`. This regression target (label) placeholder.
            If 'None' provided, a placeholder will be added automatically.
            You can retrieve that placeholder through graph key: 'TARGETS',
            or the 'placeholder' attribute of this function's returned tensor.
        optimizer: `str` (name) or `Optimizer`. Optimizer to use.
            Default: 'sgd' (Stochastic Descent Gradient).
        loss: `str` (name) or `Tensor`. Loss function used by this layer
            optimizer. Default: 'categorical_crossentropy'.
        metric: `str`, `Metric` or `Tensor`. The metric to be used.
            Default: 'default' metric is 'accuracy'. To disable metric
            calculation, set it to 'None'.
        learning_rate: `float`. This layer optimizer's learning rate.
        dtype: `tf.types`. This layer placeholder type. Default: tf.float32.
        batch_size: `int`. Batch size of data to use for training. tflearn
            supports different batch size for every optimizers. Default: 64.
        shuffle_batches: `bool`. Shuffle or not this optimizer batches at
            every epoch. Default: True.
        trainable_vars: list of `Variable`. If specified, this regression will
            only update given variable weights. Else, all trainale variable
            are going to be updated.
        op_name: A name for this layer optimizer (optional).
            Default: optimizer op name.
        name: A name for this layer's placeholder scope.

    Attributes:
        placeholder: `Tensor`. Placeholder for feeding labels.

    """

    input_shape = utils.get_incoming_shape(incoming)

    if not placeholder:
        pscope = "TargetsData" if not name else name
        with tf.name_scope(pscope):
            pshape = [None, input_shape[-1]]
            if len(input_shape) == 1:
                pshape = [None]
            placeholder = tf.placeholder(shape=pshape, dtype=dtype, name="Y")

    tf.add_to_collection(tf.GraphKeys.TARGETS, placeholder)

    step_tensor = None
    # Building Optimizer
    if isinstance(optimizer, str):
        _opt = optimizers.get(optimizer)(learning_rate)
        op_name = op_name if op_name else type(_opt).__name__
        _opt.build()
        optimizer = _opt.get_tensor()
    elif isinstance(optimizer, optimizers.Optimizer):
        op_name = op_name if op_name else type(optimizer).__name__
        if optimizer.has_decay:
            step_tensor = tf.Variable(0., name="Training_step",
                                      trainable=False)
        optimizer.build(step_tensor)
        optimizer = optimizer.get_tensor()
    elif not isinstance(optimizer, tf.train.Optimizer):
        raise ValueError("Invalid Optimizer type.")

    inputs = tf.get_collection(tf.GraphKeys.INPUTS)
    #inputs = tf.concat(0, utils.get_tensor_parents_placeholders(incoming))

    # Building metric
    # No auto accuracy for linear regression
    if len(input_shape) == 1 and metric == 'default':
        metric = None
    if metric is not None:
        # Default metric is accuracy
        if metric == 'default': metric = 'accuracy'
        if isinstance(metric, str):
            metric = metrics.get(metric)()
            metric.build(incoming, placeholder, inputs)
            metric = metric.get_tensor()
        elif isinstance(metric, metrics.Metric):
            metric.build(incoming, placeholder, inputs)
            metric = metric.get_tensor()
        elif not isinstance(metric, tf.Tensor):
            ValueError("Invalid Metric type.")

    # Building other ops (loss, training ops...)
    if isinstance(loss, str):
        loss = objectives.get(loss)(incoming, placeholder)
    elif not isinstance(loss, tf.Tensor):
        raise ValueError("Invalid Loss type.")

    tr_vars = trainable_vars
#.........这里部分代码省略.........
开发者ID:krishperumal,项目名称:tflearn,代码行数:101,代码来源:estimator.py


示例11: conv_2d_BN

def conv_2d_BN(incoming, nb_filter, filter_size, strides=1, padding='same',
            activation='linear', bias=True, weights_init='xavier',
            bias_init='zeros', regularizer=None, weight_decay=0.001,
            trainable=True, restore=True, reuse=False, scope=None,
            name="Conv2D", batch_norm=False):
    """ Convolution 2D.
    Input:
        4-D Tensor [batch, height, width, in_channels].
    Output:
        4-D Tensor [batch, new height, new width, nb_filter].
    Arguments:
        incoming: `Tensor`. Incoming 4-D Tensor.
        nb_filter: `int`. The number of convolutional filters.
        filter_size: `int` or `list of int`. Size of filters.
        strides: 'int` or list of `int`. Strides of conv operation.
            Default: [1 1 1 1].
        padding: `str` from `"same", "valid"`. Padding algo to use.
            Default: 'same'.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'Conv2D'.
        batch_norm: If true, add batch normalization with default TFLearn 
            parameters before the activation layer 
    Attributes:
        scope: `Scope`. This layer scope.
        W: `Variable`. Variable representing filter weights.
        b: `Variable`. Variable representing biases.
    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) == 4, "Incoming Tensor shape must be 4-D"
    filter_size = utils.autoformat_filter_conv2d(filter_size,
                                                 input_shape[-1],
                                                 nb_filter)
    strides = utils.autoformat_kernel_2d(strides)
    padding = utils.autoformat_padding(padding)

    # Variable Scope fix for older TF
    try:
        vscope = tf.variable_scope(scope, default_name=name, values=[incoming],
                                   reuse=reuse)
    except Exception:
        vscope = tf.variable_op_scope([incoming], scope, name, reuse=reuse)

    with vscope as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = vs.variable('W', shape=filter_size, regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)

        # Track per layer variables
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias_init, str):
                bias_init = initializations.get(bias_init)()
            b = vs.variable('b', shape=nb_filter, initializer=bias_init,
                            trainable=trainable, restore=restore)
            # Track per layer variables
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = tf.nn.conv2d(incoming, W, strides, padding)
        if b: inference = tf.nn.bias_add(inference, b)

        if batch_norm:
            inference = batch_normalization(inference)
        
        if isinstance(activation, str):
            if activation == 'softmax':
                shapes = inference.get_shape()

                inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")
#.........这里部分代码省略.........
开发者ID:mikecassell,项目名称:MLEND-Capstone-Project,代码行数:101,代码来源:customLayers.py



注:本文中的tflearn.utils.get_incoming_shape函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python variables.variable函数代码示例发布时间:2022-05-27
下一篇:
Python estimator.regression函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap