• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python data_utils.to_categorical函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tflearn.data_utils.to_categorical函数的典型用法代码示例。如果您正苦于以下问题:Python to_categorical函数的具体用法?Python to_categorical怎么用?Python to_categorical使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了to_categorical函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: do_rnn

def do_rnn(trainX, testX, trainY, testY):
    max_document_length=64
    y_test=testY
    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, max_document_length])
    net = tflearn.embedding(net, input_dim=10240000, output_dim=64)
    net = tflearn.lstm(net, 64, dropout=0.1)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0,tensorboard_dir="dga_log")
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
              batch_size=10,run_id="dga",n_epoch=1)

    y_predict_list = model.predict(testX)
    #print y_predict_list

    y_predict = []
    for i in y_predict_list:
        print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    print(classification_report(y_test, y_predict))
    print metrics.confusion_matrix(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:35,代码来源:dga.py


示例2: do_cnn_doc2vec

def do_cnn_doc2vec(trainX, testX, trainY, testY):
    global max_features
    print "CNN and doc2vec"

    #trainX = pad_sequences(trainX, maxlen=max_features, value=0.)
    #testX = pad_sequences(testX, maxlen=max_features, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Building convolutional network
    network = input_data(shape=[None,max_features], name='input')
    network = tflearn.embedding(network, input_dim=1000000, output_dim=128,validate_indices=False)
    branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
    branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
    branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
    network = merge([branch1, branch2, branch3], mode='concat', axis=1)
    network = tf.expand_dims(network, 2)
    network = global_max_pool(network)
    network = dropout(network, 0.8)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy', name='target')
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    model.fit(trainX, trainY,
              n_epoch=5, shuffle=True, validation_set=(testX, testY),
              show_metric=True, batch_size=100,run_id="review")
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:28,代码来源:review.py


示例3: do_cnn

def  do_cnn(trainX, trainY,testX, testY):
    global n_words
    # Data preprocessing
    # Sequence padding
    trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Building convolutional network
    network = input_data(shape=[None, MAX_DOCUMENT_LENGTH], name='input')
    network = tflearn.embedding(network, input_dim=n_words+1, output_dim=128)
    branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
    branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
    branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
    network = merge([branch1, branch2, branch3], mode='concat', axis=1)
    network = tf.expand_dims(network, 2)
    network = global_max_pool(network)
    network = dropout(network, 0.5)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy', name='target')
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    model.fit(trainX, trainY, n_epoch = 20, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32)
开发者ID:DemonZeros,项目名称:1book,代码行数:26,代码来源:17-2.py


示例4: do_rnn

def do_rnn(trainX, testX, trainY, testY):
    global n_words
    # Data preprocessing
    # Sequence padding
    print "GET n_words embedding %d" % n_words


    trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, MAX_DOCUMENT_LENGTH])
    net = tflearn.embedding(net, input_dim=n_words, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training



    model = tflearn.DNN(net, tensorboard_verbose=3)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
             batch_size=32,run_id="maidou")
开发者ID:DemonZeros,项目名称:1book,代码行数:28,代码来源:16-3.py


示例5: do_rnn

def do_rnn(x_train,x_test,y_train,y_test):
    global n_words
    # Data preprocessing
    # Sequence padding
    print "GET n_words embedding %d" % n_words


    #x_train = pad_sequences(x_train, maxlen=100, value=0.)
    #x_test = pad_sequences(x_test, maxlen=100, value=0.)
    # Converting labels to binary vectors
    y_train = to_categorical(y_train, nb_classes=2)
    y_test = to_categorical(y_test, nb_classes=2)

    # Network building
    net = tflearn.input_data(shape=[None, 100,n_words])
    net = tflearn.lstm(net, 10,  return_seq=True)
    net = tflearn.lstm(net, 10, )
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.1,name="output",
                             loss='categorical_crossentropy')

    # Training

    model = tflearn.DNN(net, tensorboard_verbose=3)
    model.fit(x_train, y_train, validation_set=(x_test, y_test), show_metric=True,
             batch_size=32,run_id="maidou")
开发者ID:DemonZeros,项目名称:1book,代码行数:26,代码来源:16-7.py


示例6: do_rnn

def do_rnn(x,y):
    global max_document_length
    print "RNN"
    trainX, testX, trainY, testY = train_test_split(x, y, test_size=0.4, random_state=0)
    y_test=testY

    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, max_document_length])
    net = tflearn.embedding(net, input_dim=10240000, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(trainX, trainY, validation_set=0.1, show_metric=True,
              batch_size=10,run_id="webshell",n_epoch=5)

    y_predict_list=model.predict(testX)
    y_predict=[]
    for i in y_predict_list:
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    do_metrics(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:34,代码来源:webshell.py


示例7: do_cnn

def do_cnn(x,y):
    global max_document_length
    print "CNN and tf"
    trainX, testX, trainY, testY = train_test_split(x, y, test_size=0.4, random_state=0)
    y_test=testY

    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Building convolutional network
    network = input_data(shape=[None,max_document_length], name='input')
    network = tflearn.embedding(network, input_dim=1000000, output_dim=128)
    branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
    branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
    branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
    network = merge([branch1, branch2, branch3], mode='concat', axis=1)
    network = tf.expand_dims(network, 2)
    network = global_max_pool(network)
    network = dropout(network, 0.8)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy', name='target')

    model = tflearn.DNN(network, tensorboard_verbose=0)
    #if not os.path.exists(pkl_file):
        # Training
    model.fit(trainX, trainY,
                  n_epoch=5, shuffle=True, validation_set=0.1,
                  show_metric=True, batch_size=100,run_id="webshell")
    #    model.save(pkl_file)
    #else:
    #    model.load(pkl_file)

    y_predict_list=model.predict(testX)
    #y_predict = list(model.predict(testX,as_iterable=True))

    y_predict=[]
    for i in y_predict_list:
        print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)
    print 'y_predict_list:'
    print y_predict_list
    print 'y_predict:'
    print  y_predict
    #print  y_test

    do_metrics(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:53,代码来源:webshell.py


示例8: process_form_data

def process_form_data(filename) :
    data = h5py.File(filename, 'r')
    output = h5py.File('forms_out.h5', 'w')

    test_image = output.create_dataset('test_image', (330, 3, 256, 256), dtype=np.uint8)
    train_image = output.create_dataset('train_image', (770, 3, 256, 256), dtype=np.uint8)
    test_label  = output.create_dataset('test_label', (330,11), dtype=np.int8)
    train_label  = output.create_dataset('train_label', (770,11), dtype=np.int8)

    image, labels = shuffle(data['image'], data['form'])

    onehot_labels = to_categorical(labels, 11)


    count = {}
    train_count = 0
    test_count = 0
    for i, l in enumerate(labels) :

        if l not in count :
            count[l] = 0

        if count[l] > 29 :
            train_image[train_count] = image[i]
            train_label[train_count] = onehot_labels[i]
            train_count += 1

        else :
            test_image[test_count] = image[i]
            test_label[test_count] = onehot_labels[i]
            test_count += 1

        count[l] += 1

    output.close()
开发者ID:megansearles,项目名称:neural-nets,代码行数:35,代码来源:process_data.py


示例9: do_rnn

def do_rnn(trainX, testX, trainY, testY):
    global max_sequences_len
    global max_sys_call
    # Data preprocessing
    # Sequence padding

    trainX = pad_sequences(trainX, maxlen=max_sequences_len, value=0.)
    testX = pad_sequences(testX, maxlen=max_sequences_len, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY_old=testY
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    print "GET max_sequences_len embedding %d" % max_sequences_len
    print "GET max_sys_call embedding %d" % max_sys_call

    net = tflearn.input_data([None, max_sequences_len])
    net = tflearn.embedding(net, input_dim=max_sys_call+1, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.3)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.1,
                             loss='categorical_crossentropy')

    # Training



    model = tflearn.DNN(net, tensorboard_verbose=3)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
             batch_size=32,run_id="maidou")

    y_predict_list = model.predict(testX)
    #print y_predict_list

    y_predict = []
    for i in y_predict_list:
        #print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    #y_predict=to_categorical(y_predict, nb_classes=2)

    print(classification_report(testY_old, y_predict))
    print metrics.confusion_matrix(testY_old, y_predict)
开发者ID:DemonZeros,项目名称:1book,代码行数:47,代码来源:16-5.py


示例10: do_cnn_word2vec_2d

def do_cnn_word2vec_2d(trainX, testX, trainY, testY):
    global max_features
    global max_document_length
    print "CNN and word2vec2d"
    y_test = testY
    #trainX = pad_sequences(trainX, maxlen=max_features, value=0.)
    #testX = pad_sequences(testX, maxlen=max_features, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Building convolutional network
    network = input_data(shape=[None,max_document_length,max_features,1], name='input')

    network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = fully_connected(network, 128, activation='tanh')
    network = dropout(network, 0.8)
    network = fully_connected(network, 256, activation='tanh')
    network = dropout(network, 0.8)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.01,
                         loss='categorical_crossentropy', name='target')

    model = tflearn.DNN(network, tensorboard_verbose=0)
    model.fit(trainX, trainY,
              n_epoch=5, shuffle=True, validation_set=(testX, testY),
              show_metric=True,run_id="sms")

    y_predict_list = model.predict(testX)
    print y_predict_list

    y_predict = []
    for i in y_predict_list:
        print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    print(classification_report(y_test, y_predict))
    print metrics.confusion_matrix(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:46,代码来源:sms.py


示例11: bi_lstm

def bi_lstm(trainX, trainY,testX, testY):
    trainX = pad_sequences(trainX, maxlen=200, value=0.)
    testX = pad_sequences(testX, maxlen=200, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data(shape=[None, 200])
    net = tflearn.embedding(net, input_dim=20000, output_dim=128)
    net = tflearn.bidirectional_rnn(net, BasicLSTMCell(128), BasicLSTMCell(128))
    net = tflearn.dropout(net, 0.5)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, clip_gradients=0., tensorboard_verbose=2)
    model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=64,run_id="rnn-bilstm")
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:18,代码来源:rnn.py


示例12: do_cnn_word2vec_2d_345

def do_cnn_word2vec_2d_345(trainX, testX, trainY, testY):
    global max_features
    global max_document_length
    print "CNN and word2vec_2d_345"
    y_test = testY

    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Building convolutional network
    network = input_data(shape=[None,max_document_length,max_features,1], name='input')
    network = tflearn.embedding(network, input_dim=1, output_dim=128,validate_indices=False)
    branch1 = conv_2d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
    branch2 = conv_2d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
    branch3 = conv_2d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
    network = merge([branch1, branch2, branch3], mode='concat', axis=1)
    network = tf.expand_dims(network, 2)
    network = global_max_pool_2d(network)
    network = dropout(network, 0.8)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy', name='target')
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    model.fit(trainX, trainY,
              n_epoch=5, shuffle=True, validation_set=(testX, testY),
              show_metric=True, batch_size=100,run_id="sms")

    y_predict_list = model.predict(testX)
    print y_predict_list

    y_predict = []
    for i in y_predict_list:
        print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    print(classification_report(y_test, y_predict))
    print metrics.confusion_matrix(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:41,代码来源:sms.py


示例13: lstm

def lstm(trainX, trainY,testX, testY):
    # Data preprocessing
    # Sequence padding
    trainX = pad_sequences(trainX, maxlen=100, value=0.)
    testX = pad_sequences(testX, maxlen=100, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, 100])
    net = tflearn.embedding(net, input_dim=10000, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
              batch_size=32,run_id="rnn-lstm")
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:21,代码来源:rnn.py


示例14: do_rnn_wordbag

def do_rnn_wordbag(trainX, testX, trainY, testY):
    global max_document_length
    print "RNN and wordbag"

    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, max_document_length])
    net = tflearn.embedding(net, input_dim=10240000, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
              batch_size=10,run_id="review",n_epoch=5)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:22,代码来源:review.py


示例15: create_datasets

def create_datasets(file_path, vocab_size=30000, val_fraction=0.0):

    # IMDB Dataset loading
    train, test, _ = imdb.load_data(
        path=file_path,
        n_words=vocab_size,
        valid_portion=val_fraction,
        sort_by_len=False)
    trainX, trainY = train
    testX, testY = test

    # Data preprocessing
    # Sequence padding
    trainX = pad_sequences(trainX, maxlen=FLAGS.max_len, value=0.)
    testX = pad_sequences(testX, maxlen=FLAGS.max_len, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    train_dataset = DataSet(trainX, trainY)

    return train_dataset
开发者ID:Biocodings,项目名称:Paddle,代码行数:22,代码来源:reader.py


示例16: do_cnn

def do_cnn(trainX, testX, trainY, testY):
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=4)
    testY = to_categorical(testY, nb_classes=4)
    # Building convolutional network
    network = input_data(shape=[None, 32, 32,1], name='input')
    network = conv_2d(network, 16, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = conv_2d(network, 16, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = fully_connected(network, 16, activation='tanh')
    network = dropout(network, 0.1)
    network = fully_connected(network, 16, activation='tanh')
    network = dropout(network, 0.1)
    network = fully_connected(network, 4, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.01,
                         loss='categorical_crossentropy', name='target')

    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    model.fit(trainX, trainY, n_epoch=10, validation_set=(testX, testY),show_metric=True, run_id="malware")
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:23,代码来源:malware.py


示例17: load_test_data

def load_test_data():
    test_dict = sio.loadmat(test_location)
    X = np.asarray(test_dict['X'])

    X_test = []
    for i in xrange(X.shape[3]):
        X_test.append(X[:,:,:,i])
    X_test = np.asarray(X_test)

    Y_test = test_dict['y']
    for i in xrange(len(Y_test)):
        if Y_test[i]%10 == 0:
            Y_test[i] = 0
    Y_test = to_categorical(Y_test,10)
    return (X_test,Y_test)
开发者ID:codemukul95,项目名称:SVHN-classification-using-Tensorflow,代码行数:15,代码来源:load_input.py


示例18: load_train_data

def load_train_data():
    train_dict = sio.loadmat(train_location)
    X = np.asarray(train_dict['X'])

    X_train = []
    for i in xrange(X.shape[3]):
        X_train.append(X[:,:,:,i])
    X_train = np.asarray(X_train)

    Y_train = train_dict['y']
    for i in xrange(len(Y_train)):
        if Y_train[i]%10 == 0:
            Y_train[i] = 0
    Y_train = to_categorical(Y_train,10)
    return (X_train,Y_train)
开发者ID:codemukul95,项目名称:SVHN-classification-using-Tensorflow,代码行数:15,代码来源:load_input.py


示例19: generate_image_sets_for_single_digit

def generate_image_sets_for_single_digit(nb_sample=SAMPLE_SIZE, single_digit_index=0):
    captcha = ImageCaptcha()

    labels = []
    images = []
    for i in range(0, nb_sample):
        digits = 0
        last_digit = INVALID_DIGIT
        for j in range(0, DIGIT_COUNT):
            digit = last_digit
            while digit == last_digit:
                digit = random.randint(0, 9)
            last_digit = digit
            digits = digits * 10 + digit
        digits_as_str = DIGIT_FORMAT_STR % digits
        labels.append(digits_as_str)
        images.append(captcha.generate_image(digits_as_str))

    digit_labels = list()

    for digit_index in range(0, DIGIT_COUNT):
        digit_labels.append(np.empty(nb_sample, dtype="int8"))

    shape = (nb_sample, IMAGE_STD_HEIGHT, IMAGE_STD_WIDTH, RGB_COLOR_COUNT)
    digit_image_data = np.empty(shape, dtype="float32")

    for index in range(0, nb_sample):
        img = images[index].resize((IMAGE_STD_WIDTH, IMAGE_STD_HEIGHT), PIL.Image.LANCZOS)
        img_arr = np.asarray(img, dtype="float32") / 255.0

        digit_image_data[index, :, :, :] = img_arr

        for digit_index in range(0, DIGIT_COUNT):
            digit_labels[digit_index][index] = labels[index][digit_index]

    x = digit_image_data
    y = to_categorical(digit_labels[single_digit_index], CLASS_COUNT)

    return x, y
开发者ID:utensil,项目名称:julia-playground,代码行数:39,代码来源:train_captcha_tfl.py


示例20: load_dataset

def load_dataset(x_count, y_count):
  print '[+] Loading data'
  X = []
  Y = []
  places = Set()
  data = np.load('grid/data-{0}-{1}.npy'.format(x_count, y_count))
  for row in data:
    x = map(float, row[1:5])
    time = row[4]
    x.extend([
      (time // 60) % 24 + 1, # Hour
      (time // 1440) % 7 + 1, # Day
      (time // 43200) % 12 + 1, # Month
      (time // 525600) + 1 # Year
    ])
    X.append(x)
    Y.append(row[5])
    places.add(row[5])
  places = list(places)
  Y = [places.index(y) for y in Y]
  Y = to_categorical(Y, len(places))
  print '[+] All data loaded'
  return X, Y
开发者ID:isseu,项目名称:kaggle-facebook-predicting-check-ins-nn,代码行数:23,代码来源:train.py



注:本文中的tflearn.data_utils.to_categorical函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python conv.conv_2d函数代码示例发布时间:2022-05-27
下一篇:
Python data_utils.pad_sequences函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap