本文整理汇总了Python中tflearn.fully_connected函数的典型用法代码示例。如果您正苦于以下问题:Python fully_connected函数的具体用法?Python fully_connected怎么用?Python fully_connected使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了fully_connected函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, s_date, n_frame):
self.n_epoch = 20
prev_bd = int(s_date[:6])-1
prev_ed = int(s_date[9:15])-1
if prev_bd%100 == 0: prev_bd -= 98
if prev_ed%100 == 0: prev_ed -= 98
pred_s_date = "%d01_%d01" % (prev_bd, prev_ed)
prev_model = '../model/tflearn/reg_l3_bn/big/%s' % pred_s_date
self.model_dir = '../model/tflearn/reg_l3_bn/big/%s' % s_date
tf.reset_default_graph()
tflearn.init_graph(gpu_memory_fraction=0.1)
input_layer = tflearn.input_data(shape=[None, 23*n_frame], name='input')
dense1 = tflearn.fully_connected(input_layer, 400, name='dense1', activation='relu')
dense1n = tflearn.batch_normalization(dense1, name='BN1')
dense2 = tflearn.fully_connected(dense1n, 100, name='dense2', activation='relu')
dense2n = tflearn.batch_normalization(dense2, name='BN2')
dense3 = tflearn.fully_connected(dense2n, 1, name='dense3')
output = tflearn.single_unit(dense3)
regression = tflearn.regression(output, optimizer='adam', loss='mean_square',
metric='R2', learning_rate=0.001)
self.estimators = tflearn.DNN(regression)
if os.path.exists('%s/model.tfl' % prev_model):
self.estimators.load('%s/model.tfl' % prev_model)
self.n_epoch = 10
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
开发者ID:juwarny,项目名称:PyMLT,代码行数:27,代码来源:tflearn_regression.py
示例2: model_for_type
def model_for_type(neural_net_type, tile_size, on_band_count):
"""The neural_net_type can be: one_layer_relu,
one_layer_relu_conv,
two_layer_relu_conv."""
network = tflearn.input_data(shape=[None, tile_size, tile_size, on_band_count])
# NN architectures mirror ch. 3 of www.cs.toronto.edu/~vmnih/docs/Mnih_Volodymyr_PhD_Thesis.pdf
if neural_net_type == "one_layer_relu":
network = tflearn.fully_connected(network, 64, activation="relu")
elif neural_net_type == "one_layer_relu_conv":
network = conv_2d(network, 64, 12, strides=4, activation="relu")
network = max_pool_2d(network, 3)
elif neural_net_type == "two_layer_relu_conv":
network = conv_2d(network, 64, 12, strides=4, activation="relu")
network = max_pool_2d(network, 3)
network = conv_2d(network, 128, 4, activation="relu")
else:
print("ERROR: exiting, unknown layer type for neural net")
# classify as road or not road
softmax = tflearn.fully_connected(network, 2, activation="softmax")
# hyperparameters based on www.cs.toronto.edu/~vmnih/docs/Mnih_Volodymyr_PhD_Thesis.pdf
momentum = tflearn.optimizers.Momentum(learning_rate=0.005, momentum=0.9, lr_decay=0.0002, name="Momentum")
net = tflearn.regression(softmax, optimizer=momentum, loss="categorical_crossentropy")
return tflearn.DNN(net, tensorboard_verbose=0)
开发者ID:trailbehind,项目名称:DeepOSM,代码行数:28,代码来源:single_layer_network.py
示例3: create_a3c_lstm_network
def create_a3c_lstm_network(input_tensor, output_num):
l_hid1 = tflearn.conv_2d(input_tensor, 16, 8, strides=4, activation='relu', scope='conv1', padding='valid')
l_hid2 = tflearn.conv_2d(l_hid1, 32, 4, strides=2, activation='relu', scope='conv2', padding='valid')
l_hid3 = tflearn.fully_connected(l_hid2, 256, activation='relu', scope='dense3')
# reshape l_hid3 to lstm usable shape (1, batch_size, 256)
l_hid3_reshape = tf.reshape(l_hid3, [1, -1, 256])
# have to custom make the lstm output here to use tf.nn.dynamic_rnn
l_lstm = tflearn.BasicLSTMCell(256)
# BasicLSTMCell lists state size as tuple so we need to pass tuple into dynamic_rnn
lstm_state_size = tuple([[1, x] for x in l_lstm.state_size])
# has to specifically be the same type tf.python.ops.rnn_cell.LSTMStateTuple
from tensorflow.python.ops.nn import rnn_cell as _rnn_cell
initial_lstm_state = _rnn_cell.LSTMStateTuple(tf.placeholder(tf.float32, shape=lstm_state_size[0], name='initial_lstm_state1'),
tf.placeholder(tf.float32, shape=lstm_state_size[1], name='initial_lstm_state2'))
# dynamically get the sequence length
sequence_length = tf.reshape(tf.shape(l_hid3)[0], [1])
l_lstm4, new_lstm_state = tf.nn.dynamic_rnn(l_lstm, l_hid3_reshape,
initial_state=initial_lstm_state, sequence_length=sequence_length,
time_major=False, scope='lstm4')
# reshape lstm back to (batch_size, 256)
l_lstm4_reshape = tf.reshape(l_lstm4, [-1, 256])
actor_out = tflearn.fully_connected(l_lstm4_reshape, output_num, activation='softmax', scope='actorout')
critic_out = tflearn.fully_connected(l_lstm4_reshape, 1, activation='linear', scope='criticout')
return actor_out, critic_out, initial_lstm_state, new_lstm_state
开发者ID:Islandman93,项目名称:reinforcepy,代码行数:28,代码来源:nstep_a3c_lstm.py
示例4: use_tflearn
def use_tflearn():
import tflearn
# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
# Building deep neural network
input_layer = tflearn.input_data(shape=[None, 784])
dense1 = tflearn.fully_connected(input_layer, 64, activation='tanh',
regularizer='L2', weight_decay=0.001)
dropout1 = tflearn.dropout(dense1, 0.8)
dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh',
regularizer='L2', weight_decay=0.001)
dropout2 = tflearn.dropout(dense2, 0.8)
softmax = tflearn.fully_connected(dropout2, 10, activation='softmax')
# Regression using SGD with learning rate decay and Top-3 accuracy
sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
top_k = tflearn.metrics.Top_k(3)
net = tflearn.regression(softmax, optimizer=sgd, metric=top_k,
loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=20, validation_set=(testX, testY),
show_metric=True, run_id="dense_model")
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:27,代码来源:tools.py
示例5: deep_model
def deep_model(self, wide_inputs, n_inputs, n_nodes=[100, 50], use_dropout=False):
'''
Model - deep, i.e. two-layer fully connected network model
'''
cc_input_var = {}
cc_embed_var = {}
flat_vars = []
if self.verbose:
print ("--> deep model: %s categories, %d continuous" % (len(self.categorical_columns), n_inputs))
for cc, cc_size in self.categorical_columns.items():
cc_input_var[cc] = tflearn.input_data(shape=[None, 1], name="%s_in" % cc, dtype=tf.int32)
# embedding layers only work on CPU! No GPU implementation in tensorflow, yet!
cc_embed_var[cc] = tflearn.layers.embedding_ops.embedding(cc_input_var[cc], cc_size, 8, name="deep_%s_embed" % cc)
if self.verbose:
print (" %s_embed = %s" % (cc, cc_embed_var[cc]))
flat_vars.append(tf.squeeze(cc_embed_var[cc], squeeze_dims=[1], name="%s_squeeze" % cc))
network = tf.concat(1, [wide_inputs] + flat_vars, name="deep_concat")
for k in range(len(n_nodes)):
network = tflearn.fully_connected(network, n_nodes[k], activation="relu", name="deep_fc%d" % (k+1))
if use_dropout:
network = tflearn.dropout(network, 0.5, name="deep_dropout%d" % (k+1))
if self.verbose:
print ("Deep model network before output %s" % network)
network = tflearn.fully_connected(network, 1, activation="linear", name="deep_fc_output", bias=False)
network = tf.reshape(network, [-1, 1]) # so that accuracy is binary_accuracy
if self.verbose:
print ("Deep model network %s" % network)
return network
开发者ID:ALISCIFP,项目名称:tflearn,代码行数:29,代码来源:recommender_wide_and_deep.py
示例6: yn_net
def yn_net():
net = tflearn.input_data(shape=[None, img_rows, img_cols, 1]) #D = 256, 256
net = tflearn.conv_2d(net,nb_filter=8,filter_size=3, activation='relu', name='conv0.1')
net = tflearn.conv_2d(net,nb_filter=8,filter_size=3, activation='relu', name='conv0.2')
net = tflearn.max_pool_2d(net, kernel_size = [2,2], name='maxpool0') #D = 128, 128
net = tflearn.dropout(net,0.75,name='dropout0')
net = tflearn.conv_2d(net,nb_filter=16,filter_size=3, activation='relu', name='conv1.1')
net = tflearn.conv_2d(net,nb_filter=16,filter_size=3, activation='relu', name='conv1.2')
net = tflearn.max_pool_2d(net, kernel_size = [2,2], name='maxpool1') #D = 64, 64
net = tflearn.dropout(net,0.75,name='dropout0')
net = tflearn.conv_2d(net,nb_filter=32,filter_size=3, activation='relu', name='conv2.1')
net = tflearn.conv_2d(net,nb_filter=32,filter_size=3, activation='relu', name='conv2.2')
net = tflearn.max_pool_2d(net, kernel_size = [2,2], name='maxpool2') #D = 32 by 32
net = tflearn.dropout(net,0.75,name='dropout0')
net = tflearn.conv_2d(net,nb_filter=32,filter_size=3, activation='relu', name='conv3.1')
net = tflearn.conv_2d(net,nb_filter=32,filter_size=3, activation='relu', name='conv3.2')
net = tflearn.max_pool_2d(net, kernel_size = [2,2], name='maxpool3') #D = 16 by 16
net = tflearn.dropout(net,0.75,name='dropout0')
# net = tflearn.conv_2d(net,nb_filter=64,filter_size=3, activation='relu', name='conv4.1')
# net = tflearn.conv_2d(net,nb_filter=64,filter_size=3, activation='relu', name='conv4.2')
# net = tflearn.max_pool_2d(net, kernel_size = [2,2], name='maxpool4') #D = 8 by 8
# net = tflearn.dropout(net,0.75,name='dropout0')
net = tflearn.fully_connected(net, n_units = 128, activation='relu', name='fc1')
net = tflearn.fully_connected(net, 2, activation='sigmoid')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001)
model = tflearn.DNN(net, tensorboard_verbose=1,tensorboard_dir='/tmp/tflearn_logs/')
return model
开发者ID:bmalthi,项目名称:bnerveseg,代码行数:27,代码来源:train_yn.py
示例7: vgg16
def vgg16(input, num_class):
x = tflearn.conv_2d(input, 64, 3, activation='relu', scope='conv1_1')
x = tflearn.conv_2d(x, 64, 3, activation='relu', scope='conv1_2')
x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool1')
x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_1')
x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_2')
x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool2')
x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_1')
x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_2')
x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_3')
x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool3')
x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_1')
x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_2')
x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_3')
x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool4')
x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_1')
x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_2')
x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_3')
x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool5')
x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc6')
x = tflearn.dropout(x, 0.5, name='dropout1')
x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc7')
x = tflearn.dropout(x, 0.5, name='dropout2')
x = tflearn.fully_connected(x, num_class, activation='softmax', scope='fc8',
restore=False)
return x
开发者ID:EddywardoFTW,项目名称:tflearn,代码行数:35,代码来源:vgg_network_finetuning.py
示例8: build_cnn_network
def build_cnn_network(self, network):
""" Build CNN network.
Args:
network: base network.
Returns:
model: CNN model.
"""
print('Building CNN network.')
# Convolutional network building
network = tflearn.conv_2d(network, 32,
self.IMAGE_CHANNEL_NUM,
activation='relu')
network = tflearn.max_pool_2d(network, 2)
network = tflearn.conv_2d(network, 64,
self.IMAGE_CHANNEL_NUM,
activation='relu')
network = tflearn.conv_2d(network, 64,
self.IMAGE_CHANNEL_NUM,
activation='relu')
network = tflearn.max_pool_2d(network, 2)
network = tflearn.fully_connected(
network, 32 * 32, activation='relu')
network = tflearn.dropout(network, 0.5)
# Two category. positive or negative.
network = tflearn.fully_connected(network, 2,
activation='softmax')
network = tflearn.regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
print("CNN network built.")
return network
开发者ID:NuitNoir,项目名称:MachineLearning,代码行数:34,代码来源:dnn_network.py
示例9: build_network
def build_network():
network = tflearn.input_data(shape=[None, 2])
network = tflearn.fully_connected(network, 64, activation='relu', regularizer='L2', weight_decay=0.001)
network = tflearn.fully_connected(network, 1, activation='sigmoid')
network = tflearn.regression(network, optimizer='sgd', learning_rate=0.3,
loss='mean_square')
return network
开发者ID:belkale,项目名称:deeplearning_playground,代码行数:7,代码来源:circle_dl.py
示例10: create_nips_network
def create_nips_network(input_tensor, output_num):
l_hid1 = tflearn.conv_2d(input_tensor, 16, 8, strides=4, activation='relu', scope='conv1', padding='valid')
l_hid2 = tflearn.conv_2d(l_hid1, 32, 4, strides=2, activation='relu', scope='conv2', padding='valid')
l_hid3 = tflearn.fully_connected(l_hid2, 256, activation='relu', scope='dense3')
out = tflearn.fully_connected(l_hid3, output_num, scope='denseout')
return out
开发者ID:Islandman93,项目名称:reinforcepy,代码行数:7,代码来源:tflow_util.py
示例11: create_a3c_network
def create_a3c_network(input_tensor, output_num):
l_hid1 = tflearn.conv_2d(input_tensor, 16, 8, strides=4, activation='relu', padding='valid', scope='conv1')
l_hid2 = tflearn.conv_2d(l_hid1, 32, 4, strides=2, activation='relu', padding='valid', scope='conv2')
l_hid3 = tflearn.fully_connected(l_hid2, 256, activation='relu', scope='dense3')
actor_out = tflearn.fully_connected(l_hid3, output_num, activation='softmax', scope='actorout')
critic_out = tflearn.fully_connected(l_hid3, 1, activation='linear', scope='criticout')
return actor_out, critic_out
开发者ID:Islandman93,项目名称:reinforcepy,代码行数:8,代码来源:tflow_util.py
示例12: create_actor_network
def create_actor_network(self):
inputs = tflearn.input_data(shape=[None, self.s_dim])
net = tflearn.fully_connected(inputs, 400, activation='relu')
net = tflearn.fully_connected(net, 300, activation='relu')
# Final layer weights are init to Uniform[-3e-3, 3e-3]
w_init = tflearn.initializations.uniform(minval=-0.003, maxval=0.003)
out = tflearn.fully_connected(net, self.a_dim, activation='tanh', weights_init=w_init)
scaled_out = tf.mul(out, self.action_bound) # Scale output to -action_bound to action_bound
return inputs, out, scaled_out
开发者ID:ataitler,项目名称:DQN,代码行数:9,代码来源:ddpg.py
示例13: simple_learn
def simple_learn(self):
tflearn.init_graph()
net=tflearn.input_data(shape=[None,64,64,3])
net=tflearn.fully_connected(net,64)
net=tflearn.dropout(net,.5)
net=tflearn.fully_connected(net,10,activation='softmax')
net=tflearn.regression(net,optimizer='adam',loss='softmax_categorical_crossentropy')
model = tflearn.DNN(net)
model.fit(self.trainset,self.trainlabels)
开发者ID:Qrkchrm,项目名称:StateFarmShared,代码行数:9,代码来源:dataviewing.py
示例14: define_dnn_topology
def define_dnn_topology(input_num, first_layer, second_layer):
tf.Graph().as_default()
g = tflearn.input_data(shape=[None, input_num])
g = tflearn.fully_connected(g, first_layer, activation='linear')
g = tflearn.fully_connected(g, second_layer, activation='linear')
g = tflearn.fully_connected(g, 1, activation='sigmoid')
g = tflearn.regression(g, optimizer='sgd', learning_rate=2., loss='mean_square')
tf.Graph().finalize()
return g
开发者ID:kirai,项目名称:tensorflowplay,代码行数:9,代码来源:logicalopdnn.py
示例15: make_core_network
def make_core_network(network):
dense1 = tflearn.fully_connected(network, 64, activation='tanh',
regularizer='L2', weight_decay=0.001, name="dense1")
dropout1 = tflearn.dropout(dense1, 0.8)
dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh',
regularizer='L2', weight_decay=0.001, name="dense2")
dropout2 = tflearn.dropout(dense2, 0.8)
softmax = tflearn.fully_connected(dropout2, 10, activation='softmax', name="softmax")
return softmax
开发者ID:EddywardoFTW,项目名称:tflearn,代码行数:9,代码来源:weights_loading_scope.py
示例16: __init__
def __init__(self,cluster,env,task_index,learning_rate=0.001):
''' Set-up network '''
action_dim, discrete = check_action_space(env) # detect action space
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:{}".format(task_index),cluster=cluster)):
import tflearn # need to import within the tf.device statement for the tflearn.is_training variable to be shared !
#tflearn.init_graph()
#training = tf.get_variable(tflearn.get_training_mode().name,initializer=False)
#tf.get_variable(
# Placeholders
self.s = tf.placeholder("float32",np.array(np.append(None,env.observation_shape)))
self.A = tf.placeholder("float32", (None,))
self.V = tf.placeholder("float32", (None,))
if discrete:
self.a = tf.placeholder("int32", (None,)) # discrete action space
self.a_one_hot = tf.one_hot(self.a,action_dim)
else:
self.a = tf.placeholder("float32", np.append(None,action_dim)) # continuous action space
# Network
ff = encoder_s(self.s,scope='encoder',reuse=False)
self.p_out = tflearn.fully_connected(ff, n_units=action_dim, activation='softmax')
self.v_out = tflearn.fully_connected(ff, n_units=1, activation='linear')
##### A3C #######
# Compute log_pi
log_probs = tf.log(tf.clip_by_value(self.p_out,1e-20,1.0)) # log pi
if discrete:
log_pi_given_a = tf.reduce_sum(log_probs * self.a_one_hot,reduction_indices=1)
else:
raise(NotImplementedError)
# Losses
p_loss = -1*log_pi_given_a * self.A
entropy_loss = -1*tf.reduce_sum(self.p_out * log_probs,reduction_indices=1,name="entropy_loss") # policy entropy
v_loss = tf.nn.l2_loss(self.V - self.v_out, name="v_loss")
loss1 = tf.add(p_loss,0.01*entropy_loss)
self.loss = tf.add(loss1,v_loss)
# Trainer
optimizer = tf.train.AdamOptimizer(learning_rate)
self.trainer = optimizer.minimize(self.loss)
# Global counter
#self.global_step = tf.get_variable('global_step', [],
# initializer = tf.constant_initializer(0),
# trainable = False)
#self.global_step = tf.Variable(0)
#self.step_op = tf.Variable(0, trainable=False, name='step')
#self.step_t = tf.placeholder("int32",(1,))
#self.step_inc_op = self.step_op.assign_add(tf.squeeze(self.step_t), use_locking=True)
# other stuff
self.summary_placeholders, self.update_ops, self.summary_op = setup_summaries() # Summary operations
self.saver = tf.train.Saver(max_to_keep=10)
self.init_op = tf.initialize_all_variables()
print('network initialized')
开发者ID:tmoer,项目名称:a3c-Tensorflow-OpenAIGym,代码行数:56,代码来源:Network.py
示例17: build_network
def build_network():
network = tflearn.input_data(shape=[None, 2])
network = tflearn.fully_connected(network, 64, activation='relu')
network = dropout(network, 0.9)
network = tflearn.fully_connected(network, 128, activation='relu')
network = dropout(network, 0.9)
network = tflearn.fully_connected(network, 2, activation='softmax')
network = tflearn.regression(network, optimizer='sgd', learning_rate=0.1,
loss='categorical_crossentropy')
return network
开发者ID:belkale,项目名称:deeplearning_playground,代码行数:10,代码来源:complicated1_dl.py
示例18: discriminator
def discriminator(x, reuse=False):
with tf.variable_scope('Discriminator', reuse=reuse):
x = tflearn.conv_2d(x, 64, 5, activation='tanh')
x = tflearn.avg_pool_2d(x, 2)
x = tflearn.conv_2d(x, 128, 5, activation='tanh')
x = tflearn.avg_pool_2d(x, 2)
x = tflearn.fully_connected(x, 1024, activation='tanh')
x = tflearn.fully_connected(x, 2)
x = tf.nn.softmax(x)
return x
开发者ID:EddywardoFTW,项目名称:tflearn,代码行数:10,代码来源:dcgan.py
示例19: run_XOR
def run_XOR():
X = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]]
Y = [[0.], [1.], [1.], [0.]]
g = tflearn.input_data(shape=[None, 2])
g = tflearn.fully_connected(g, 128, activation='linear')
g = tflearn.fully_connected(g, 128, activation='linear')
g = tflearn.fully_connected(g, 1, activation='sigmoid')
g = tflearn.regression(
g, optimizer='sgd', learning_rate=2., loss='mean_square')
train_model(g, X, Y)
开发者ID:kengz,项目名称:ai-notebook,代码行数:12,代码来源:logical.py
示例20: run_mnist
def run_mnist():
X, Y, testX, testY = mnist.load_data(one_hot=True)
g = tflearn.input_data(shape=[None, 784], name='input')
g = tflearn.fully_connected(g, 128, name='dense1')
g = tflearn.fully_connected(g, 256, name='dense2')
g = tflearn.fully_connected(g, 10, activation='softmax', name='softmax')
g = tflearn.regression(
g, optimizer='adam',
learning_rate=0.001,
loss='categorical_crossentropy')
if not os.path.isdir('models'):
os.mkdir('models')
m = tflearn.DNN(g, checkpoint_path='models/model.tfl.ckpt')
m.fit(X, Y, n_epoch=1,
validation_set=(testX, testY),
show_metric=True,
# Snapshot (save & evaluate) model every epoch.
snapshot_epoch=True,
# Snapshot (save & evalaute) model every 500 steps.
snapshot_step=500,
run_id='model_and_weights')
m.save('models/mnist.tfl')
# # load from file or ckpt and continue training
# m.load('models/mnist.tfl')
# # m.load('models/mnist.tfl.ckpt-500')
# m.fit(X, Y, n_epoch=1,
# validation_set=(testX, testY),
# show_metric=True,
# # Snapshot (save & evaluate) model every epoch.
# snapshot_epoch=True,
# # Snapshot (save & evalaute) model every 500 steps.
# snapshot_step=500,
# run_id='model_and_weights')
# retrieve layer by name, print weights
dense1_vars = tflearn.variables.get_layer_variables_by_name('dense1')
print('Dense1 layer weights:')
print(m.get_weights(dense1_vars[0]))
# or using generic tflearn function
print('Dense1 layer biases:')
with m.session.as_default():
print(tflearn.variables.get_value(dense1_vars[1]))
# or can even retrieve using attr `W` or `b`!
print('Dense2 layer weights:')
dense2 = tflearn.get_layer_by_name('dense2')
print(dense2)
print(m.get_weights(dense2.W))
print('Dense2 layer biases:')
with m.session.as_default():
print(tflearn.variables.get_value(dense2.b))
开发者ID:kengz,项目名称:ai-notebook,代码行数:53,代码来源:weights_persistence.py
注:本文中的tflearn.fully_connected函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论