• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tests.run_test函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tests.run_test函数的典型用法代码示例。如果您正苦于以下问题:Python run_test函数的具体用法?Python run_test怎么用?Python run_test使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了run_test函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main

def main(do_tests=False, do_bench=False):
	# Neither tests nor benchmarks are being run.
	if not do_tests and not do_bench:
		print("test: neither tests nor benchmarks are enabled")
		parser.print_help()
		return

	if do_tests:
		print("[!] Running test suite!")
		tests.run_test()

	if do_bench:
		print("[!] Running benchmarks! (may take some time)")
		tests.run_bench()
开发者ID:cyphar,项目名称:redone,代码行数:14,代码来源:test.py


示例2: set

                                epochs=1,
                                reproducible=True, #slow, turn off for real problems
                                seed=1234)

    # conver train_supervised with autoencoder to lower-dimensional space
    train_supervised_features = ae_model.deepfeatures(train_supervised[0:resp]._frame(), 0)

    assert train_supervised_features.ncol == nfeatures, "Dimensionality of reconstruction is wrong!"

    # Train DRF on extracted feature space
    drf_model = h2o.random_forest(x=train_supervised_features[0:20],
                                  y=train_supervised[resp],
                                  ntrees=10,
                                  min_rows=10,
                                  seed=1234)

    # Test the DRF model on the test set (processed through deep features)
    test_features = ae_model.deepfeatures(test_hex[0:resp]._frame(), 0)
    test_features = test_features.cbind(test_hex[resp])._frame()

    # Confusion Matrix and assertion
    cm = drf_model.confusion_matrix(test_features)
    cm.show()

    # 10% error +/- 0.001
    assert abs(cm.cell_values[10][10] - 0.082) < 0.001, "Error. Expected 0.082, but got {0}".format(cm.cell_values[10][10])

if __name__ == '__main__':
    tests.run_test(sys.argv, deeplearning_autoencoder)

开发者ID:tomasgreif,项目名称:h2o-3,代码行数:29,代码来源:pyunit_autoencoderDeepLearning_large.py


示例3: list

                                                                            mul_metric_diff)

    # Clustering metric json
    df = h2o.import_file(path=h2o.locate("smalldata/iris/iris.csv"))
    clus_mod = h2o.kmeans(x=df[0:4], k=3, standardize=False)
    clus_met = clus_mod.model_performance()
    clus_metric_json_keys_have = clus_met._metric_json.keys()
    clus_metric_json_keys_desired = [u'tot_withinss',
                                     u'model_category',
                                     u'description',
                                     u'frame',
                                     u'model_checksum',
                                     u'MSE',
                                     u'__meta',
                                     u'scoring_time',
                                     u'betweenss',
                                     u'predictions',
                                     u'totss',
                                     u'model',
                                     u'duration_in_ms',
                                     u'frame_checksum',
                                     u'centroid_stats']
    clus_metric_diff = list(set(clus_metric_json_keys_have) - set(clus_metric_json_keys_desired))
    assert not clus_metric_diff, "There's a difference between the current ({0}) and the desired ({1}) clustering " \
                                "metric json. The difference is {2}".format(clus_metric_json_keys_have,
                                                                            clus_metric_json_keys_desired,
                                                                            clus_metric_diff)

if __name__ == "__main__":
    tests.run_test(sys.argv, metric_json_check)
开发者ID:rakeshsukumar,项目名称:h2o-3,代码行数:30,代码来源:pyunit_metric_json_check.py


示例4: abs

    assert abs(1515.91815848623 - prostate_glm_h2o.residual_deviance()) < 0.1

    print "Checking binomial model without offset..."
    prostate_glm_h2o = h2o.glm(
        x=prostate_hex[["RACE", "DPROS", "DCAPS", "PSA", "VOL", "GLEASON"]],
        y=prostate_hex["CAPSULE"],
        training_frame=prostate_hex,
        family="poisson",
        standardize=False,
    )
    print "h2o residual: {0}".format(prostate_glm_h2o.residual_deviance())
    print "r residual: {0}".format(216.339989007507)
    assert abs(216.339989007507 - prostate_glm_h2o.residual_deviance()) < 0.1

    print "Checking binomial model with offset..."
    prostate_glm_h2o = h2o.glm(
        x=prostate_hex[["RACE", "DPROS", "DCAPS", "PSA", "VOL", "GLEASON", "AGE"]],
        y=prostate_hex["CAPSULE"],
        training_frame=prostate_hex,
        family="poisson",
        offset_column="AGE",
        standardize=False,
    )
    print "h2o residual: {0}".format(prostate_glm_h2o.residual_deviance())
    print "r residual: {0}".format(2761.76218461138)
    assert abs(2761.76218461138 - prostate_glm_h2o.residual_deviance()) < 0.1


if __name__ == "__main__":
    tests.run_test(sys.argv, offset_1897)
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:30,代码来源:pyunit_NOPASS_hex_1897_glm_offset.py


示例5: anyfactor

import sys
sys.path.insert(1, "../../../")
import h2o, tests

def anyfactor():
    
    

    iris = h2o.import_file(path=h2o.locate("smalldata/iris/iris.csv"))

    # frame (positive example)
    assert iris.anyfactor(), "Expected true, but got false. Column 5 is a factor."

    # frame (negative example)
    assert not iris[:,:4].anyfactor(), "Expected false, but got true. Columns 1-4 are numeric."

    # vec (positive example)
    assert iris[4].anyfactor(), "Expected true, but got false. Column 5 is a factor."

    # vec (negative example)
    assert not iris[0].anyfactor(), "Expected false, but got true. Columns 1 is numeric."

if __name__ == "__main__":
    tests.run_test(sys.argv, anyfactor)
开发者ID:Jacksonlark,项目名称:h2o-3,代码行数:24,代码来源:pyunit_anyfactor.py


示例6: weights_and_distributions

import sys
sys.path.insert(1, "../../../")
import h2o, tests

def weights_and_distributions(ip,port):

    htable  = h2o.upload_file(h2o.locate("smalldata/gbm_test/moppe.csv"))
    htable["premiekl"] = htable["premiekl"].asfactor()
    htable["moptva"] = htable["moptva"].asfactor()
    htable["zon"] = htable["zon"]

    # gamma
    dl = h2o.deeplearning(x=htable[0:3],y=htable["medskad"],training_frame=htable,distribution="gamma",weights_column="antskad")
    predictions = dl.predict(htable)

    # gaussian
    dl = h2o.deeplearning(x=htable[0:3],y=htable["medskad"],training_frame=htable,distribution="gaussian",weights_column="antskad")
    predictions = dl.predict(htable)

    # poisson
    dl = h2o.deeplearning(x=htable[0:3],y=htable["medskad"],training_frame=htable,distribution="poisson",weights_column="antskad")
    predictions = dl.predict(htable)

    # tweedie
    dl = h2o.deeplearning(x=htable[0:3],y=htable["medskad"],training_frame=htable,distribution="tweedie",weights_column="antskad")
    predictions = dl.predict(htable)

if __name__ == "__main__":
    tests.run_test(sys.argv, weights_and_distributions)
开发者ID:rakeshsukumar,项目名称:h2o-3,代码行数:29,代码来源:pyunit_weights_and_distributionsDeeplearning.py


示例7: get_modelKmeans

from sklearn.preprocessing import Imputer

def get_modelKmeans():
    # Connect to a pre-existing cluster
      # connect to localhost:54321

    #Log.info("Importing benign.csv data...\n")
    benign_h2o = h2o.import_file(path=h2o.locate("smalldata/logreg/benign.csv"))
    #benign_h2o.summary()

    benign_sci = np.genfromtxt(h2o.locate("smalldata/logreg/benign.csv"), delimiter=",")
    # Impute missing values with column mean
    imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
    benign_sci = imp.fit_transform(benign_sci)

    for i in range(2,7):
        # Log.info("H2O K-Means")
        km_h2o = h2o.kmeans(x=benign_h2o, k=i)
        km_h2o.show()
        model = h2o.get_model(km_h2o._id)
        model.show()

        km_sci = KMeans(n_clusters=i, init='k-means++', n_init=1)
        km_sci.fit(benign_sci)
        print "sckit centers"
        print km_sci.cluster_centers_

if __name__ == "__main__":
   tests.run_test(sys.argv, get_modelKmeans)

开发者ID:Jacksonlark,项目名称:h2o-3,代码行数:29,代码来源:pyunit_get_modelKmeans.py


示例8: rep_len_check

import sys
sys.path.insert(1, "../../")
import h2o, tests

def rep_len_check():
    # Connect to a pre-existing cluster
    

    iris = h2o.import_file(path=h2o.locate("smalldata/iris/iris.csv"))

    # data is single column (vec)
    vec = iris[0].rep_len(length_out=301)
    assert vec.nrow == 301, "Expected an H2OVec with 301 rows, but got {0} rows".format(vec.nrow)
    for r in range(len(vec)): assert vec[r,:] == vec[r % 150,:], "Expected {0}, but got {1}".format(vec[r % 150,:], vec[r,:])

    # data is frame
    fr = iris.rep_len(length_out=7)
    assert fr.nrow == 150 and fr.ncol == 7, "Expected an H2OFrame with 150 rows and 7 columns, but got {0} rows and {1} cols".format(fr.nrow, fr.ncol)

if __name__ == "__main__":
    tests.run_test(sys.argv, rep_len_check)
开发者ID:Jacksonlark,项目名称:h2o-3,代码行数:21,代码来源:pyunit_rep_len.py


示例9: assert

  df_hex.summary()

  assert (not df_hex['h1'].isfactor())
  assert (df_hex['h2'].isfactor())
  assert (not df_hex['h3'].isfactor())

  df_hex['h1'] = df_hex['h1'].asfactor()
  df_hex['h2'] = df_hex['h2'].asfactor()
  df_hex['h3'] = df_hex['h3'].asfactor()

  df_hex.show()
  df_hex.summary()

  assert (df_hex['h1'].isfactor())
  assert (df_hex['h2'].isfactor())
  assert (df_hex['h3'].isfactor())

  df_hex['h1'] = df_hex['h1'].asnumeric()
  df_hex['h2'] = df_hex['h2'].asnumeric()
  df_hex['h3'] = df_hex['h3'].asnumeric()

  df_hex.show()
  df_hex.summary()

  assert (not df_hex['h1'].isfactor())
  assert (not df_hex['h2'].isfactor())
  assert (not df_hex['h3'].isfactor())

if __name__ == "__main__":
    tests.run_test(sys.argv, continuous_or_categorical)
开发者ID:rakeshsukumar,项目名称:h2o-3,代码行数:30,代码来源:pyunit_hexdev_29_categorical_continuous.py


示例10:

    res = iris[0] == 4.7
    res_rows = res.nrow
    assert res_rows == rows, "dimension mismatch"
    new_rows = iris[res].nrow
    assert new_rows == 2, "wrong number of rows returned"

    res = 3.5 == iris[1]
    res_rows = res.nrow
    assert res_rows == rows, "dimension mismatch"
    new_rows = iris[res].nrow
    assert new_rows == 6, "wrong number of rows returned"

    # frame/frame
    res = iris == iris
    res_rows, res_cols = res.dim
    assert res_rows == rows and res_cols == cols, "dimension mismatch"

    res = iris[0:2] == iris[1:3]
    res_rows, res_cols = res.dim
    assert res_rows == rows and res_cols == 2, "dimension mismatch"

    #try:
    #    res = iris == iris[0:3]
    #    res.show()
    #    assert False, "expected error. frames are different dimensions."
    #except EnvironmentError:
    #    pass

if __name__ == "__main__":
    tests.run_test(sys.argv, binop_eq)
开发者ID:rakeshsukumar,项目名称:h2o-3,代码行数:30,代码来源:pyunit_binop2_eq.py


示例11: gbm_mean_residual_deviance

import sys
sys.path.insert(1,"../../../")
import h2o, tests

def gbm_mean_residual_deviance():

    cars =  h2o.import_file(path=tests.locate("smalldata/junit/cars_20mpg.csv"))
    s = cars[0].runif()
    train = cars[s > 0.2]
    valid = cars[s <= 0.2]
    predictors = ["displacement","power","weight","acceleration","year"]
    response_col = "economy"
    gbm = h2o.gbm(x=train[predictors],
                  y=train[response_col],
                  validation_x=valid[predictors],
                  validation_y=valid[response_col],
                  nfolds=3)
    gbm_mrd = gbm.mean_residual_deviance(train=True,valid=True,xval=True)
    assert isinstance(gbm_mrd['train'],float), "Expected training mean residual deviance to be a float, but got " \
                                              "{0}".format(type(gbm_mrd['train']))
    assert isinstance(gbm_mrd['valid'],float), "Expected validation mean residual deviance to be a float, but got " \
                                              "{0}".format(type(gbm_mrd['valid']))
    assert isinstance(gbm_mrd['xval'],float), "Expected cross-validation mean residual deviance to be a float, but got " \
                                             "{0}".format(type(gbm_mrd['xval']))

if __name__ == '__main__':
    tests.run_test(sys.argv, gbm_mean_residual_deviance)
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:27,代码来源:pyunit_mean_residual_devianceGBM.py


示例12: check_same

    h2o_zero_weights.set_names(["weights"])
    h2o_data_zero_weights = h2o_cars_data.cbind(h2o_zero_weights)
    h2o_data_zeros_removed = h2o_cars_data[h2o_zero_weights["weights"] == 1]

    print "\n\nChecking that using some zero weights is equivalent to removing those observations:"
    check_same(h2o_data_zeros_removed, h2o_data_zero_weights, 1)

    # doubled weights same as doubled observations
    doubled_weights = [[1] if random.randint(0,1) else [2] for r in range(406)]
    h2o_doubled_weights = h2o.H2OFrame(python_obj=doubled_weights)
    h2o_doubled_weights.set_names(["weights"])
    h2o_data_doubled_weights = h2o_cars_data.cbind(h2o_doubled_weights)

    doubled_data = h2o.as_list(h2o_cars_data, use_pandas=False)
    colnames = doubled_data.pop(0)
    for idx, w in enumerate(doubled_weights):
        if w[0] == 2: doubled_data.append(doubled_data[idx])
    h2o_data_doubled = h2o.H2OFrame(python_obj=doubled_data)
    h2o_data_doubled.set_names(colnames)

    h2o_data_doubled["economy_20mpg"] = h2o_data_doubled["economy_20mpg"].asfactor()
    h2o_data_doubled["cylinders"] = h2o_data_doubled["cylinders"].asfactor()
    h2o_data_doubled_weights["economy_20mpg"] = h2o_data_doubled_weights["economy_20mpg"].asfactor()
    h2o_data_doubled_weights["cylinders"] = h2o_data_doubled_weights["cylinders"].asfactor()

    print "\n\nChecking that doubling some weights is equivalent to doubling those observations:"
    check_same(h2o_data_doubled, h2o_data_doubled_weights, 1)

if __name__ == "__main__":
    tests.run_test(sys.argv, weights_var_imp)
开发者ID:junwucs,项目名称:h2o-3,代码行数:30,代码来源:pyunit_weights_var_impGBM.py


示例13: Unif

    # Training set has two predictor columns
    # X1: 10 categorical levels, 100 observations per level; X2: Unif(0,1) noise
    # Ratio of y = 1 per Level: cat01 = 1.0 (strong predictor), cat02 to cat10 = 0.5 (weak predictors)

    
    

    #Log.info("Importing swpreds_1000x3.csv data...\n")
    swpreds = h2o.import_file(path=tests.locate("smalldata/gbm_test/swpreds_1000x3.csv"))
    swpreds["y"] = swpreds["y"].asfactor()

    #Log.info("Summary of swpreds_1000x3.csv from H2O:\n")
    #swpreds.summary()

    # Train H2O DRF without Noise Column
    #Log.info("Distributed Random Forest with only Predictor Column")
    model1 = h2o.random_forest(x=swpreds[["X1"]], y=swpreds["y"], ntrees=50, max_depth=20, nbins=500)
    model1.show()
    perf1 = model1.model_performance(swpreds)
    print(perf1.auc())

    # Train H2O DRF Model including Noise Column:
    #Log.info("Distributed Random Forest including Noise Column")
    model2 = h2o.random_forest(x=swpreds[["X1","X2"]], y=swpreds["y"], ntrees=50, max_depth=20, nbins=500)
    model2.show()
    perf2 = model2.model_performance(swpreds)
    print(perf2.auc())
  
if __name__ == "__main__":
  tests.run_test(sys.argv, swpredsRF)
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:30,代码来源:pyunit_swpredsRF.py


示例14: benignKmeans

from sklearn.cluster import KMeans
from sklearn.preprocessing import Imputer

def benignKmeans():
    # Connect to a pre-existing cluster
      # connect to localhost:54321


    #  Log.info("Importing benign.csv data...\n")
    benign_h2o = h2o.import_file(path=h2o.locate("smalldata/logreg/benign.csv"))
    #benign_h2o.summary()

    benign_sci = np.genfromtxt(h2o.locate("smalldata/logreg/benign.csv"), delimiter=",")
    # Impute missing values with column mean
    imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
    benign_sci = imp.fit_transform(benign_sci)

    # Log.info(paste("H2O K-Means with ", i, " clusters:\n", sep = ""))
    for i in range(1,7):
        benign_h2o_km = h2o.kmeans(x=benign_h2o, k=i)
        print "H2O centers"
        print benign_h2o_km.centers()

        benign_sci_km = KMeans(n_clusters=i, init='k-means++', n_init=1)
        benign_sci_km.fit(benign_sci)
        print "sckit centers"
        print benign_sci_km.cluster_centers_

if __name__ == "__main__":
  tests.run_test(sys.argv, benignKmeans)
开发者ID:Jacksonlark,项目名称:h2o-3,代码行数:30,代码来源:pyunit_benignKmeans.py


示例15: pyunit_remove_vecs

import sys
sys.path.insert(1, "../../")
import h2o, tests
import random

def pyunit_remove_vecs():
    # TODO PUBDEV-1789
    pros = h2o.import_file(h2o.locate("smalldata/prostate/prostate.csv"))
    rows, cols = pros.dim

    remove = random.randint(1,5)
    p1 = pros.remove_vecs(cols=random.sample(range(cols),remove))
    new_rows, new_cols = p1.dim
    assert new_rows == rows and new_cols == cols-remove, "Expected {0} rows and {1} columns, but got {2} rows and {3} " \
                                                         "columns.".format(rows,cols,new_rows,new_cols)

    remove = random.randint(1,5)
    p1 = pros.remove_vecs(cols=random.sample(pros.names,remove))
    new_rows, new_cols = p1.dim
    assert new_rows == rows and new_cols == cols-remove, "Expected {0} rows and {1} columns, but got {2} rows and {3} " \
                                                         "columns.".format(rows,cols,new_rows,new_cols)

if __name__ == "__main__":
    tests.run_test(sys.argv, pyunit_remove_vecs)
开发者ID:Jacksonlark,项目名称:h2o-3,代码行数:24,代码来源:pyunit_NOPASS_remove_vecs.py


示例16: vec_slicing

import sys
sys.path.insert(1, "../../../")
import h2o, tests

def vec_slicing():
    
    

    iris = h2o.import_file(path=tests.locate("smalldata/iris/iris_wheader.csv"))
    iris.show()

    ###################################################################

    # H2OVec[int]
    res = 2 - iris
    res2 = res[0]
    assert abs(res2[3,0] - -2.6) < 1e-10 and abs(res2[17,0] - -3.1) < 1e-10 and abs(res2[24,0] - -2.8) < 1e-10, "incorrect values"

    # H2OVec[slice]
    res = iris[12:25,1]
    assert abs(res[0,0] - 3.0) < 1e-10 and abs(res[1,0] - 3.0) < 1e-10 and abs(res[5,0] - 3.5) < 1e-10, "incorrect values"

if __name__ == "__main__":
    tests.run_test(sys.argv, vec_slicing)
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:24,代码来源:pyunit_vec_slicing.py


示例17: group_by

import pandas as pd
import numpy as np

def group_by():
    # Connect to a pre-existing cluster
    

    h2o_iris = h2o.import_file(path=h2o.locate("smalldata/iris/iris_wheader.csv"))
    pd_iris = pd.read_csv(h2o.locate("smalldata/iris/iris_wheader.csv"))

    na_handling = ["ignore","rm","all"]
    col_names = h2o_iris.col_names[0:4]

    print "Running smoke test"

    # smoke test
    for na in na_handling:
      grouped = h2o_iris.group_by("class")
      grouped \
        .count(na=na) \
        .min(  na=na) \
        .max(  na=na) \
        .mean( na=na) \
        .var(  na=na) \
        .sd(   na=na) \
        .ss(   na=na) \
        .sum(  na=na)
      print grouped.get_frame()
if __name__ == "__main__":
    tests.run_test(sys.argv, group_by)
开发者ID:junwucs,项目名称:h2o-3,代码行数:30,代码来源:pyunit_groupby.py


示例18: wide_dataset_large

import numpy as np

def wide_dataset_large():
    
    

    print("Reading in Arcene training data for binomial modeling.")
    trainDataResponse = np.genfromtxt(tests.locate("smalldata/arcene/arcene_train_labels.labels"), delimiter=' ')
    trainDataResponse = np.where(trainDataResponse == -1, 0, 1)
    trainDataFeatures = np.genfromtxt(tests.locate("smalldata/arcene/arcene_train.data"), delimiter=' ')
    trainData = h2o.H2OFrame(np.column_stack((trainDataResponse, trainDataFeatures)).tolist())

    print("Run model on 3250 columns of Arcene with strong rules off.")
    model = h2o.glm(x=trainData[1:3250], y=trainData[0].asfactor(), family="binomial", lambda_search=False, alpha=[1])

    print("Test model on validation set.")
    validDataResponse = np.genfromtxt(tests.locate("smalldata/arcene/arcene_valid_labels.labels"), delimiter=' ')
    validDataResponse = np.where(validDataResponse == -1, 0, 1)
    validDataFeatures = np.genfromtxt(tests.locate("smalldata/arcene/arcene_valid.data"), delimiter=' ')
    validData = h2o.H2OFrame(np.column_stack((validDataResponse, validDataFeatures)).tolist())
    prediction = model.predict(validData)

    print("Check performance of predictions.")
    performance = model.model_performance(validData)

    print("Check that prediction AUC better than guessing (0.5).")
    assert performance.auc() > 0.5, "predictions should be better then pure chance"

if __name__ == "__main__":
    tests.run_test(sys.argv, wide_dataset_large)
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:30,代码来源:pyunit_wide_dataset_largeGLM.py


示例19:

  # Ratio of y = 1 per Level: cat01 = 1.0 (strong predictor), cat02 to cat10 = 0.5 (weak predictors)

  
  
  
  #Log.info("Importing swpreds_1000x3.csv data...\n")
  swpreds = h2o.import_file(path=tests.locate("smalldata/gbm_test/swpreds_1000x3.csv"))
  swpreds["y"] = swpreds["y"].asfactor()

  #Log.info("Summary of swpreds_1000x3.csv from H2O:\n")
  #swpreds.summary()
  
  # Train H2O GBM without Noise Column
  #Log.info("H2O GBM with parameters:\nntrees = 50, max_depth = 20, nbins = 500\n")
  h2o_gbm_model1 = h2o.gbm(x=swpreds[["X1"]], y=swpreds["y"], distribution="bernoulli", ntrees=50, max_depth=20,
                           nbins=500)
  h2o_gbm_model1.show()
  h2o_gbm_perf1 = h2o_gbm_model1.model_performance(swpreds)
  h2o_auc1 = h2o_gbm_perf1.auc()

  # Train H2O GBM Model including Noise Column:
  #Log.info("H2O GBM with parameters:\nntrees = 50, max_depth = 20, nbins = 500\n")
  h2o_gbm_model2 = h2o.gbm(x=swpreds[["X1","X2"]], y=swpreds["y"], distribution="bernoulli", ntrees=50, max_depth=20,
                           nbins=500)
  h2o_gbm_model2.show()
  h2o_gbm_perf2 = h2o_gbm_model2.model_performance(swpreds)
  h2o_auc2 = h2o_gbm_perf2.auc()

if __name__ == "__main__":
  tests.run_test(sys.argv, swpredsGBM)
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:30,代码来源:pyunit_swpredsGBM.py


示例20: get_modelGBM

import sys
sys.path.insert(1, "../../../")
import h2o, tests

def get_modelGBM():
  
  

  prostate = h2o.import_file(path=tests.locate("smalldata/logreg/prostate.csv"))
  prostate.describe()
  prostate[1] = prostate[1].asfactor()
  prostate_gbm = h2o.gbm(y=prostate[1], x=prostate[2:9], distribution="bernoulli")
  prostate_gbm.show()

  prostate_gbm.predict(prostate)
  model = h2o.get_model(prostate_gbm._id)
  model.show()

if __name__ == "__main__":
  tests.run_test(sys.argv, get_modelGBM)
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:20,代码来源:pyunit_get_modelGBM.py



注:本文中的tests.run_test函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tests.s2b函数代码示例发布时间:2022-05-27
下一篇:
Python tests.run_isolated函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap