• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python logger.info函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorpack.utils.logger.info函数的典型用法代码示例。如果您正苦于以下问题:Python info函数的具体用法?Python info怎么用?Python info使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了info函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_config

def get_config(model, nr_tower):
    batch = TOTAL_BATCH_SIZE // nr_tower

    logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
    dataset_train = get_data('train', batch)
    dataset_val = get_data('val', batch)

    step_size = 1280000 // TOTAL_BATCH_SIZE
    max_iter = 3 * 10**5
    max_epoch = (max_iter // step_size) + 1
    callbacks = [
        ModelSaver(),
        ScheduledHyperParamSetter('learning_rate',
                                  [(0, 0.5), (max_iter, 0)],
                                  interp='linear', step_based=True),
    ]
    infs = [ClassificationError('wrong-top1', 'val-error-top1'),
            ClassificationError('wrong-top5', 'val-error-top5')]
    if nr_tower == 1:
        # single-GPU inference with queue prefetch
        callbacks.append(InferenceRunner(QueueInput(dataset_val), infs))
    else:
        # multi-GPU inference (with mandatory queue prefetch)
        callbacks.append(DataParallelInferenceRunner(
            dataset_val, infs, list(range(nr_tower))))

    return TrainConfig(
        model=model,
        dataflow=dataset_train,
        callbacks=callbacks,
        steps_per_epoch=step_size,
        max_epoch=max_epoch,
    )
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:33,代码来源:shufflenet.py


示例2: _sync

 def _sync(self):
     logger.info("Updating weights ...")
     dic = {v.name: v.eval() for v in self.vars}
     self.shared_dic['params'] = dic
     self.condvar.acquire()
     self.condvar.notify_all()
     self.condvar.release()
开发者ID:j50888,项目名称:tensorpack,代码行数:7,代码来源:simulator.py


示例3: __init__

    def __init__(self,
                 predictor_io_names,
                 player,
                 state_shape,
                 batch_size,
                 memory_size, init_memory_size,
                 exploration, end_exploration, exploration_epoch_anneal,
                 update_frequency, history_len):
        """
        Args:
            predictor_io_names (tuple of list of str): input/output names to
                predict Q value from state.
            player (RLEnvironment): the player.
            history_len (int): length of history frames to concat. Zero-filled
                initial frames.
            update_frequency (int): number of new transitions to add to memory
                after sampling a batch of transitions for training.
        """
        init_memory_size = int(init_memory_size)

        for k, v in locals().items():
            if k != 'self':
                setattr(self, k, v)
        self.num_actions = player.get_action_space().num_actions()
        logger.info("Number of Legal actions: {}".format(self.num_actions))

        self.rng = get_rng(self)
        self._init_memory_flag = threading.Event()  # tell if memory has been initialized

        # TODO just use a semaphore?
        # a queue to receive notifications to populate memory
        self._populate_job_queue = queue.Queue(maxsize=5)

        self.mem = ReplayMemory(memory_size, state_shape, history_len)
开发者ID:j50888,项目名称:tensorpack,代码行数:34,代码来源:expreplay.py


示例4: _init_memory

    def _init_memory(self):
        logger.info("Populating replay memory with epsilon={} ...".format(self.exploration))

        with get_tqdm(total=self.init_memory_size) as pbar:
            while len(self.mem) < self.init_memory_size:
                self._populate_exp()
                pbar.update()
        self._init_memory_flag.set()
开发者ID:tobyma,项目名称:tensorpack,代码行数:8,代码来源:expreplay.py


示例5: __init__

 def __init__(self, dirname, label='phoneme'):
     self.dirname = dirname
     assert os.path.isdir(dirname), dirname
     self.filelists = [k for k in fs.recursive_walk(self.dirname)
                       if k.endswith('.wav')]
     logger.info("Found {} wav files ...".format(len(self.filelists)))
     assert len(self.filelists), "Found no '.wav' files!"
     assert label in ['phoneme', 'letter'], label
     self.label = label
开发者ID:ahuirecome,项目名称:tensorpack,代码行数:9,代码来源:create-lmdb.py


示例6: eval_model_multithread

def eval_model_multithread(pred, nr_eval, get_player_fn):
    """
    Args:
        pred (OfflinePredictor): state -> Qvalue
    """
    NR_PROC = min(multiprocessing.cpu_count() // 2, 8)
    with pred.sess.as_default():
        mean, max = eval_with_funcs([pred] * NR_PROC, nr_eval, get_player_fn)
    logger.info("Average Score: {}; Max Score: {}".format(mean, max))
开发者ID:ahuirecome,项目名称:tensorpack,代码行数:9,代码来源:common.py


示例7: update_target_param

 def update_target_param():
     vars = tf.global_variables()
     ops = []
     G = tf.get_default_graph()
     for v in vars:
         target_name = v.op.name
         if target_name.startswith('target'):
             new_name = target_name.replace('target/', '')
             logger.info("{} <- {}".format(target_name, new_name))
             ops.append(v.assign(G.get_tensor_by_name(new_name + ':0')))
     return tf.group(*ops, name='update_target_network')
开发者ID:caserzer,项目名称:tensorpack,代码行数:11,代码来源:DQNModel.py


示例8: eval_with_funcs

def eval_with_funcs(predictors, nr_eval, get_player_fn, verbose=False):
    """
    Args:
        predictors ([PredictorBase])
    """
    class Worker(StoppableThread, ShareSessionThread):
        def __init__(self, func, queue):
            super(Worker, self).__init__()
            self._func = func
            self.q = queue

        def func(self, *args, **kwargs):
            if self.stopped():
                raise RuntimeError("stopped!")
            return self._func(*args, **kwargs)

        def run(self):
            with self.default_sess():
                player = get_player_fn(train=False)
                while not self.stopped():
                    try:
                        score = play_one_episode(player, self.func)
                    except RuntimeError:
                        return
                    self.queue_put_stoppable(self.q, score)

    q = queue.Queue()
    threads = [Worker(f, q) for f in predictors]

    for k in threads:
        k.start()
        time.sleep(0.1)  # avoid simulator bugs
    stat = StatCounter()

    def fetch():
        r = q.get()
        stat.feed(r)
        if verbose:
            logger.info("Score: {}".format(r))

    for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()):
        fetch()
    # waiting is necessary, otherwise the estimated mean score is biased
    logger.info("Waiting for all the workers to finish the last run...")
    for k in threads:
        k.stop()
    for k in threads:
        k.join()
    while q.qsize():
        fetch()

    if stat.count > 0:
        return (stat.average, stat.max)
    return (0, 0)
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:54,代码来源:common.py


示例9: convert_param_name

def convert_param_name(param):
    resnet_param = {}
    for k, v in six.iteritems(param):
        try:
            newname = name_conversion(k)
        except Exception:
            logger.error("Exception when processing caffe layer {}".format(k))
            raise
        logger.info("Name Transform: " + k + ' --> ' + newname)
        resnet_param[newname] = v
    return resnet_param
开发者ID:caserzer,项目名称:tensorpack,代码行数:11,代码来源:load-resnet.py


示例10: compute_mean_std

def compute_mean_std(db, fname):
    ds = LMDBSerializer.load(db, shuffle=False)
    ds.reset_state()
    o = OnlineMoments()
    for dp in get_tqdm(ds):
        feat = dp[0]  # len x dim
        for f in feat:
            o.feed(f)
    logger.info("Writing to {} ...".format(fname))
    with open(fname, 'wb') as f:
        f.write(serialize.dumps([o.mean, o.std]))
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:11,代码来源:create-lmdb.py


示例11: run

 def run(self):
     self.clients = defaultdict(self.ClientState)
     try:
         while True:
             msg = loads(self.c2s_socket.recv(copy=False).bytes)
             ident, state, reward, isOver = msg
             client = self.clients[ident]
             if client.ident is None:
                 client.ident = ident
             # maybe check history and warn about dead client?
             self._process_msg(client, state, reward, isOver)
     except zmq.ContextTerminated:
         logger.info("[Simulator] Context was terminated.")
开发者ID:ahuirecome,项目名称:tensorpack,代码行数:13,代码来源:simulator.py


示例12: compute_mean_std

def compute_mean_std(db, fname):
    ds = LMDBDataPoint(db, shuffle=False)
    ds.reset_state()
    o = OnlineMoments()
    with get_tqdm(total=ds.size()) as bar:
        for dp in ds.get_data():
            feat = dp[0]  # len x dim
            for f in feat:
                o.feed(f)
            bar.update()
    logger.info("Writing to {} ...".format(fname))
    with open(fname, 'wb') as f:
        f.write(serialize.dumps([o.mean, o.std]))
开发者ID:ahuirecome,项目名称:tensorpack,代码行数:13,代码来源:create-lmdb.py


示例13: _trigger_epoch

 def _trigger_epoch(self):
     if self.exploration > self.end_exploration:
         self.exploration -= self.exploration_epoch_anneal
         logger.info("Exploration changed to {}".format(self.exploration))
     # log player statistics
     stats = self.player.stats
     for k, v in six.iteritems(stats):
         try:
             mean, max = np.mean(v), np.max(v)
             self.trainer.add_scalar_summary('expreplay/mean_' + k, mean)
             self.trainer.add_scalar_summary('expreplay/max_' + k, max)
         except:
             pass
     self.player.reset_stat()
开发者ID:j50888,项目名称:tensorpack,代码行数:14,代码来源:expreplay.py


示例14: print_class_histogram

    def print_class_histogram(self, imgs):
        nr_class = len(COCOMeta.class_names)
        hist_bins = np.arange(nr_class + 1)

        # Histogram of ground-truth objects
        gt_hist = np.zeros((nr_class,), dtype=np.int)
        for entry in imgs:
            # filter crowd?
            gt_inds = np.where(
                (entry['class'] > 0) & (entry['is_crowd'] == 0))[0]
            gt_classes = entry['class'][gt_inds]
            gt_hist += np.histogram(gt_classes, bins=hist_bins)[0]
        data = [[COCOMeta.class_names[i], v] for i, v in enumerate(gt_hist)]
        data.append(['total', sum([x[1] for x in data])])
        table = tabulate(data, headers=['class', '#box'], tablefmt='pipe')
        logger.info("Ground-Truth Boxes:\n" + colored(table, 'cyan'))
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:16,代码来源:coco.py


示例15: texture_loss

                def texture_loss(x, p=16):
                    _, h, w, c = x.get_shape().as_list()
                    x = normalize(x)
                    assert h % p == 0 and w % p == 0
                    logger.info('Create texture loss for layer {} with shape {}'.format(x.name, x.get_shape()))

                    x = tf.space_to_batch_nd(x, [p, p], [[0, 0], [0, 0]])  # [b * ?, h/p, w/p, c]
                    x = tf.reshape(x, [p, p, -1, h // p, w // p, c])       # [p, p, b, h/p, w/p, c]
                    x = tf.transpose(x, [2, 3, 4, 0, 1, 5])                # [b * ?, p, p, c]
                    patches_a, patches_b = tf.split(x, 2, axis=0)          # each is b,h/p,w/p,p,p,c

                    patches_a = tf.reshape(patches_a, [-1, p, p, c])       # [b * ?, p, p, c]
                    patches_b = tf.reshape(patches_b, [-1, p, p, c])       # [b * ?, p, p, c]
                    return tf.losses.mean_squared_error(
                        gram_matrix(patches_a),
                        gram_matrix(patches_b),
                        reduction=Reduction.MEAN
                    )
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:18,代码来源:enet-pat.py


示例16: _parameter_net

    def _parameter_net(self, theta, kernel_shape=9):
        """Estimate filters for convolution layers

        Args:
            theta: angle of filter
            kernel_shape: size of each filter

        Returns:
            learned filter as [B, k, k, 1]
        """
        with argscope(FullyConnected, nl=tf.nn.leaky_relu):
            net = FullyConnected('fc1', theta, 64)
            net = FullyConnected('fc2', net, 128)

        pred_filter = FullyConnected('fc3', net, kernel_shape ** 2, nl=tf.identity)
        pred_filter = tf.reshape(pred_filter, [BATCH, kernel_shape, kernel_shape, 1], name="pred_filter")
        logger.info('Parameter net output: {}'.format(pred_filter.get_shape().as_list()))
        return pred_filter
开发者ID:tobyma,项目名称:tensorpack,代码行数:18,代码来源:steering-filter.py


示例17: __init__

    def __init__(self, basedir, name):
        assert name in COCOMeta.INSTANCE_TO_BASEDIR.keys(), name
        self.name = name
        self._imgdir = os.path.join(basedir, COCOMeta.INSTANCE_TO_BASEDIR[name])
        assert os.path.isdir(self._imgdir), self._imgdir
        annotation_file = os.path.join(
            basedir, 'annotations/instances_{}.json'.format(name))
        assert os.path.isfile(annotation_file), annotation_file

        self.coco = COCO(annotation_file)

        # initialize the meta
        cat_ids = self.coco.getCatIds()
        cat_names = [c['name'] for c in self.coco.loadCats(cat_ids)]
        if not COCOMeta.valid():
            COCOMeta.create(cat_ids, cat_names)
        else:
            assert COCOMeta.cat_names == cat_names

        logger.info("Instances loaded from {}.".format(annotation_file))
开发者ID:ahuirecome,项目名称:tensorpack,代码行数:20,代码来源:coco.py


示例18: get_logits

    def get_logits(self, image):

        with argscope([Conv2D, MaxPooling, AvgPooling, GlobalAvgPooling, BatchNorm], data_format='channels_first'), \
                argscope(Conv2D, use_bias=False):

            group = args.group
            if not args.v2:
                # Copied from the paper
                channels = {
                    3: [240, 480, 960],
                    4: [272, 544, 1088],
                    8: [384, 768, 1536]
                }
                mul = group * 4  # #chan has to be a multiple of this number
                channels = [int(math.ceil(x * args.ratio / mul) * mul)
                            for x in channels[group]]
                # The first channel must be a multiple of group
                first_chan = int(math.ceil(24 * args.ratio / group) * group)
            else:
                # Copied from the paper
                channels = {
                    0.5: [48, 96, 192],
                    1.: [116, 232, 464]
                }[args.ratio]
                first_chan = 24

            logger.info("#Channels: " + str([first_chan] + channels))

            l = Conv2D('conv1', image, first_chan, 3, strides=2, activation=BNReLU)
            l = MaxPooling('pool1', l, 3, 2, padding='SAME')

            l = shufflenet_stage('stage2', l, channels[0], 4, group)
            l = shufflenet_stage('stage3', l, channels[1], 8, group)
            l = shufflenet_stage('stage4', l, channels[2], 4, group)

            if args.v2:
                l = Conv2D('conv5', l, 1024, 1, activation=BNReLU)

            l = GlobalAvgPooling('gap', l)
            logits = FullyConnected('linear', l, 1000)
            return logits
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:41,代码来源:shufflenet.py


示例19: run

    def run(self):
        self.clients = defaultdict(self.ClientState)
        try:
            while True:
                msg = loads(self.c2s_socket.recv(copy=False).bytes)
                ident, state, reward, isOver = msg
                # TODO check history and warn about dead client
                client = self.clients[ident]

                # check if reward&isOver is valid
                # in the first message, only state is valid
                if len(client.memory) > 0:
                    client.memory[-1].reward = reward
                    if isOver:
                        self._on_episode_over(ident)
                    else:
                        self._on_datapoint(ident)
                # feed state and return action
                self._on_state(state, ident)
        except zmq.ContextTerminated:
            logger.info("[Simulator] Context was terminated.")
开发者ID:j50888,项目名称:tensorpack,代码行数:21,代码来源:simulator.py


示例20: __init__

    def __init__(self,
                 predictor_io_names,
                 player,
                 state_shape,
                 batch_size,
                 memory_size, init_memory_size,
                 init_exploration,
                 update_frequency, history_len):
        """
        Args:
            predictor_io_names (tuple of list of str): input/output names to
                predict Q value from state.
            player (RLEnvironment): the player.
            state_shape (tuple): h, w, c
            history_len (int): length of history frames to concat. Zero-filled
                initial frames.
            update_frequency (int): number of new transitions to add to memory
                after sampling a batch of transitions for training.
        """
        assert len(state_shape) == 3, state_shape
        init_memory_size = int(init_memory_size)

        for k, v in locals().items():
            if k != 'self':
                setattr(self, k, v)
        self.exploration = init_exploration
        self.num_actions = player.action_space.n
        logger.info("Number of Legal actions: {}".format(self.num_actions))

        self.rng = get_rng(self)
        self._init_memory_flag = threading.Event()  # tell if memory has been initialized

        # a queue to receive notifications to populate memory
        self._populate_job_queue = queue.Queue(maxsize=5)

        self.mem = ReplayMemory(memory_size, state_shape, history_len)
        self._current_ob = self.player.reset()
        self._player_scores = StatCounter()
        self._current_game_score = StatCounter()
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:39,代码来源:expreplay.py



注:本文中的tensorpack.utils.logger.info函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tephi.Tephigram类代码示例发布时间:2022-05-27
下一篇:
Python summary.add_moving_summary函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap