• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow_hub.create_module_spec函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow_hub.create_module_spec函数的典型用法代码示例。如果您正苦于以下问题:Python create_module_spec函数的具体用法?Python create_module_spec怎么用?Python create_module_spec使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了create_module_spec函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testMultipleApplicationsInDifferentScopes

  def testMultipleApplicationsInDifferentScopes(self):
    export_path = os.path.join(self.get_temp_dir(), "module-applied-in-scope")

    spec = hub.create_module_spec(another_stateful_module_fn)
    stateful_module = hub.Module(spec, name="moduleA")
    with tf.name_scope("foo"):
      with tf.variable_scope("bar"):
        times2 = stateful_module(tf.constant([2.0]))
    with tf.name_scope("baz"):
      times3 = stateful_module(tf.constant([3.0]))

    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      self.assertAllClose(sess.run(times2), [6.0])
      self.assertAllClose(sess.run(times3), [9.0])
      self.assertEqual(len(stateful_module.variable_map), 1)
      self.assertEquals(
          stateful_module.variable_map["iamtheoneandonly"].name,
          "moduleA/iamtheoneandonly:0")
      stateful_module.export(export_path, sess)

    # Check minimal functionality of the exported module.
    tf.reset_default_graph()
    stateful_module = hub.Module(export_path, name="moduleB")
    times2 = stateful_module(tf.constant([2.0]))
    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      self.assertAllClose(sess.run(times2), [6.0])
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py


示例2: testApplyStatefulModuleMultipleTimes

  def testApplyStatefulModuleMultipleTimes(self):
    export_path = os.path.join(self.get_temp_dir(), "another-module")

    with tf.Session() as sess:
      spec = hub.create_module_spec(another_stateful_module_fn)
      stateful_module = hub.Module(spec, trainable=True)
      times2 = stateful_module(tf.constant([2.0]))
      times3 = stateful_module(tf.constant([3.0]))
      step = tf.Variable(0, trainable=False, name="global_step")
      # Training will adapt the hidden variable to be approximately 2:
      train = tf.contrib.layers.optimize_loss(
          loss=tf.losses.mean_squared_error(times2, [4.0]),
          global_step=step,
          learning_rate=0.05,
          optimizer="SGD")
      sess.run(tf.global_variables_initializer())
      for _ in range(50):
        sess.run(train)
      self.assertAllClose(sess.run(times2), [4.0])
      self.assertAllClose(sess.run(times3), [6.0])
      stateful_module.export(export_path, sess)
    with tf.Session() as sess:
      stateful_module = hub.Module(export_path)
      times4 = stateful_module(tf.constant([4.0]))
      times5 = stateful_module(tf.constant([5.0]))
      sess.run(tf.global_variables_initializer())
      self.assertAllClose(sess.run(times4), [8.0])
      self.assertAllClose(sess.run(times5), [10.0])
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py


示例3: testClearControlDependenciesForModuleStateButNotApplyGraphs

  def testClearControlDependenciesForModuleStateButNotApplyGraphs(self):
    module_spec = hub.create_module_spec(stateless_module_fn)

    with tf.Graph().as_default() as g1:
      v = tf.placeholder(dtype=tf.int64, name="v")
      m = hub.Module(module_spec)
      m(v)

    with tf.Graph().as_default() as g2:
      v = tf.placeholder(dtype=tf.int64, name="v")
      with tf.control_dependencies([v]):
        m = hub.Module(module_spec)
      m(v)

    self.assertEqual(g1.as_graph_def(), g2.as_graph_def())

    with tf.Graph().as_default() as g3:
      v = tf.placeholder(dtype=tf.int64, name="v")
      m = hub.Module(module_spec)
      m(v)

    with tf.Graph().as_default() as g4:
      v = tf.placeholder(dtype=tf.int64, name="v")
      m = hub.Module(module_spec)
      with tf.control_dependencies([v]):
        m(v)

    self.assertNotEqual(g3.as_graph_def(), g4.as_graph_def())
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py


示例4: testModuleWithRegularizedLayers

  def testModuleWithRegularizedLayers(self):
    # The linear map y = Mx + b with L2 regularization on M and b
    # when trained at x = [1,1] with L2 loss towards the target y' = [4,4]
    # learns M = [[1,1],[1,1]], b = [1,1], y = [3,3], with eight balanced
    # loss terms: the elements of M, b, and y' - y are all distance 1 from zero.
    train_input = [[1.0, 1.0]]
    target = [[4.0, 4.0]]

    spec = hub.create_module_spec(layers_module_fn)
    with tf.Graph().as_default():
      m = hub.Module(spec, trainable=True)
      x = tf.placeholder(dtype=tf.float32)
      y = m(x)
      squared_loss = tf.losses.mean_squared_error(y, target, weights=2.0)
      # Recover REGULARIZATION_LOSSES from the module.
      total_loss = squared_loss + tf.losses.get_regularization_loss()
      step = tf.Variable(0, trainable=False, name="global_step")
      train = tf.contrib.layers.optimize_loss(
          loss=total_loss, global_step=step, learning_rate=0.1, optimizer="SGD")
      with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for _ in range(50):
          sess.run(train, feed_dict={x: train_input})
        # Verify M = [[1,1],[1,1]], b = [1,1] by evaluating at three points.
        # Without regularization, the result would be an underdetermined mess.
        out = sess.run(y, feed_dict={x: [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]]})
        self.assertAllClose(
            out, [[1.0, 1.0], [2.0, 2.0], [2.0, 2.0]], atol=0.001)
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py


示例5: testUpdateOps

  def testUpdateOps(self):
    spec = hub.create_module_spec(update_ops_module_fn)
    with tf.Session() as sess:
      trainable_module = hub.Module(spec, trainable=True)
      fixed_module = hub.Module(spec, trainable=False)

      # TODO(b/62433105): Understand what is the desired behaviour of UPDATE_OPS
      # and applying a Module multiple times. For now UPDATE_OPS probably only
      # do something reasonable if each Module is applied exactly one time.
      trainable_module()
      fixed_module()

      variable = tf.Variable(0.0)
      step = tf.Variable(0, trainable=False, name="global_step")
      train_op = tf.contrib.layers.optimize_loss(
          variable,
          global_step=step,
          learning_rate=0.1,
          optimizer="SGD")

      sess.run(tf.global_variables_initializer())
      sess.run(train_op)
      trainable_module_vars = list(trainable_module.variable_map.values())
      self.assertEqual(len(trainable_module_vars), 1)
      self.assertEqual(sess.run(trainable_module_vars[0]), 1)
      fixed_module_vars = list(fixed_module.variable_map.values())
      self.assertEqual(len(fixed_module_vars), 1)
      self.assertEqual(sess.run(fixed_module_vars[0]), 0)
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py


示例6: testDuplicateAssetCopy

  def testDuplicateAssetCopy(self):
    export_path = os.path.join(self.get_temp_dir(), "assets-module")

    def module_with_duplicate_asset():
      vocabulary_file = self.create_vocab_file("tokens2.txt", ["1", "2", "3"])
      indices1 = tf.placeholder(dtype=tf.int64, name="indices1")
      indices2 = tf.placeholder(dtype=tf.int64, name="indices2")
      hub.add_signature(
          inputs={
              "indices_1": indices1,
              "indices_2": indices2,
          },
          outputs={
              "x": do_table_lookup(indices1, vocabulary_file),
              "y": do_table_lookup(indices2, vocabulary_file),
          })

    with tf.Graph().as_default():
      spec = hub.create_module_spec(module_with_duplicate_asset)
      module_a = hub.Module(spec)
      module_a({"indices_1": tf.constant([1, 2], dtype=tf.int64),
                "indices_2": tf.constant([1, 2], dtype=tf.int64)}, as_dict=True)
      with tf.Session() as sess:
        sess.run(tf.tables_initializer())
        module_a.export(export_path, sess)
开发者ID:jankim,项目名称:hub,代码行数:25,代码来源:native_module_test.py


示例7: testLoadModuleFromFuncDef

 def testLoadModuleFromFuncDef(self):
   with tf.Session() as sess:
     v = tf.placeholder(tf.int64)
     spec = hub.create_module_spec(stateless_module_fn)
     m = hub.Module(spec)
     y = m(v)
     self.assertEqual(sess.run(y, feed_dict={v: 10}), 100)
开发者ID:jankim,项目名称:hub,代码行数:7,代码来源:native_module_test.py


示例8: test_module_export_vocab_on_custom_fs

  def test_module_export_vocab_on_custom_fs(self):
    root_dir = "file://%s" % self.get_temp_dir()
    export_dir = "%s_%s" % (root_dir, "export")
    tf.gfile.MakeDirs(export_dir)
    # Create a module with a vocab file located on a custom filesystem.
    vocab_dir = os.path.join(root_dir, "vocab_location")
    tf.gfile.MakeDirs(vocab_dir)
    vocab_filename = os.path.join(vocab_dir, "tokens.txt")
    tf_utils.atomic_write_string_to_file(vocab_filename, "one", False)

    def create_assets_module_fn():

      def assets_module_fn():
        indices = tf.placeholder(dtype=tf.int64, name="indices")
        table = tf.contrib.lookup.index_to_string_table_from_file(
            vocabulary_file=vocab_filename, default_value="UNKNOWN")
        outputs = table.lookup(indices)
        hub.add_signature(inputs=indices, outputs=outputs)

      return assets_module_fn

    with tf.Graph().as_default():
      assets_module_fn = create_assets_module_fn()
      spec = hub.create_module_spec(assets_module_fn)
      embedding_module = hub.Module(spec)
      with tf.Session() as sess:
        sess.run(tf.tables_initializer())
        embedding_module.export(export_dir, sess)

    module_files = tf.gfile.ListDirectory(export_dir)
    self.assertListEqual(
        ["assets", "saved_model.pb", "tfhub_module.pb", "variables"],
        sorted(module_files))
    module_files = tf.gfile.ListDirectory(os.path.join(export_dir, "assets"))
    self.assertListEqual(["tokens.txt"], module_files)
开发者ID:jankim,项目名称:hub,代码行数:35,代码来源:e2e_test.py


示例9: testUnusedInputModule

 def testUnusedInputModule(self):
   with tf.Session() as sess:
     v1 = tf.placeholder(tf.int64)
     v2 = tf.placeholder(tf.int64)
     spec = hub.create_module_spec(unused_input_module_fn)
     m = hub.Module(spec)
     out = m({"x": v1, "unused": v2})
     self.assertEqual(sess.run(out, feed_dict={v1: 10, v2: 4}), 100)
开发者ID:jankim,项目名称:hub,代码行数:8,代码来源:native_module_test.py


示例10: testVariables

 def testVariables(self):
   spec = hub.create_module_spec(stateful_module_fn)
   m = hub.Module(spec, name="test")
   out = m()
   self.assertEqual(list(m.variable_map.keys()), ["var123"])
   self.assertEqual(m.variable_map["var123"].name, "test/var123:0")
   with tf.Session() as sess:
     sess.run(tf.global_variables_initializer())
     self.assertAllClose(sess.run(out), [1.0, 2.0, 3.0])
开发者ID:jankim,项目名称:hub,代码行数:9,代码来源:native_module_test.py


示例11: testMultipleOutputs

 def testMultipleOutputs(self):
   with tf.Session() as sess:
     spec = hub.create_module_spec(multiple_outputs_module_fn)
     m = hub.Module(spec)
     output = m(tf.constant([2.0]), as_dict=True)
     output1 = output["y"]
     output2 = output["z"]
     sess.run(tf.global_variables_initializer())
     self.assertAllClose(sess.run(output1), [6.0])
     self.assertAllClose(sess.run(output2), [18.0])
开发者ID:jankim,项目名称:hub,代码行数:10,代码来源:native_module_test.py


示例12: testConvertToTensor

 def testConvertToTensor(self):
   spec = hub.create_module_spec(stateless_module_fn)
   with tf.Session() as sess:
     m = hub.Module(spec)
     y = m([10, 2])
     self.assertAllEqual(sess.run(y), [100, 4])
   with tf.Session() as sess:
     m = hub.Module(spec)
     with self.assertRaises(TypeError):
       m("hello")
开发者ID:jankim,项目名称:hub,代码行数:10,代码来源:native_module_test.py


示例13: testLargePartitionedVariables

 def testLargePartitionedVariables(self):
   spec = hub.create_module_spec(
       create_partitioned_variable_module_fn(partitions=25, shape=[600, 3]))
   m = hub.Module(spec, name="test")
   out = m()
   self.assertEqual(len(m.variable_map), 2)
   self.assertEqual(len(m.variable_map["partitioned_variable"]), 25)
   with tf.Session() as sess:
     sess.run(tf.global_variables_initializer())
     self.assertAllClose(sess.run(out), 2 * np.ones([600, 3]))
开发者ID:jankim,项目名称:hub,代码行数:10,代码来源:native_module_test.py


示例14: _testReluModule

 def _testReluModule(self, module_fn):
   spec = hub.create_module_spec(module_fn)
   with tf.Graph().as_default():
     with tf.Session() as sess:
       x = tf.placeholder(dtype=tf.float32, name="x")
       relu_module = hub.Module(spec)
       y = relu_module(x)
       self.assertAllClose(sess.run(y, {x: 9.1}), 9.1)
       self.assertAllClose(sess.run(y, {x: -2.4}), 0.0)
       grad = tf.gradients([y], [x])
       self.assertAllClose(sess.run(grad, {x: 2}), [1.0])
       self.assertAllClose(sess.run(grad, {x: -2}), [0.0])
开发者ID:jankim,项目名称:hub,代码行数:12,代码来源:native_module_test.py


示例15: testWhileModule

 def testWhileModule(self):
   spec = hub.create_module_spec(while_module_fn)
   with tf.Graph().as_default():
     with tf.Session() as sess:
       x = tf.placeholder(tf.float32)
       n = tf.placeholder(tf.int32)
       pow_module = hub.Module(spec)
       y = pow_module({"x": x, "n": n})
       self.assertAllClose(sess.run(y, {x: 9.1, n: 1}), 9.1)
       self.assertAllClose(sess.run(y, {x: 2.4, n: 2}), 5.76)
       grad = tf.gradients([y], [x])
       self.assertAllClose(sess.run(grad, {x: 2, n: 3}), [12.0])
开发者ID:jankim,项目名称:hub,代码行数:12,代码来源:native_module_test.py


示例16: testModuleWithMultipleSignatures

  def testModuleWithMultipleSignatures(self):
    spec = hub.create_module_spec(multiple_signature_module_fn)
    module_a = hub.Module(spec, name="moduleA")
    in_tensor = tf.placeholder(dtype=tf.float32)
    out_tensor_a = module_a(in_tensor, signature="mul")
    out_tensor_b = module_a(out_tensor_a, signature="div")

    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      in_values = [6, 3, 1]
      self.assertAllClose(
          sess.run(out_tensor_b, feed_dict={in_tensor: in_values}), in_values)
开发者ID:jankim,项目名称:hub,代码行数:12,代码来源:native_module_test.py


示例17: export_module

def export_module(path):
  spec = hub.create_module_spec(half_plus_two)

  with tf.Graph().as_default():
    module = hub.Module(spec)

    init_a = tf.assign(module.variable_map["a"], 0.5)
    init_b = tf.assign(module.variable_map["b"], 2.0)
    init_vars = tf.group([init_a, init_b])

    with tf.Session() as session:
      session.run(init_vars)
      module.export(path, session)
开发者ID:jankim,项目名称:hub,代码行数:13,代码来源:export.py


示例18: export_as_tfhub_module

def export_as_tfhub_module(model_name,
                           hparams,
                           decode_hparams,
                           problem,
                           checkpoint_path,
                           export_dir):
  """Exports the last checkpoint from the directory as tfhub module.

  It creates the Module spec and signature (based on T2T problem information),
  which is later used to create and export the hub module.
  Module will be saved inside the ckpt_dir.

  Args:
    model_name: name of the model to be exported.
    hparams: T2T parameters, model graph will be based on them.
    decode_hparams: T2T parameters for decoding.
    problem: the name of the problem
    checkpoint_path: path to the checkpoint to be exported.
    export_dir: Directory to write the exported model to.
  """

  def hub_module_fn():
    """Creates the TF graph for the hub module."""
    model_fn = t2t_model.T2TModel.make_estimator_model_fn(
        model_name,
        hparams,
        decode_hparams=decode_hparams,
        use_tpu=FLAGS.use_tpu)
    features = problem.serving_input_fn(hparams).features

    # we must do a copy of the features, as the model_fn can add additional
    # entries there (like hyperparameter settings etc).
    original_features = features.copy()
    spec = model_fn(features, labels=None, mode=tf.estimator.ModeKeys.PREDICT)

    hub.add_signature(
        inputs=original_features,
        outputs=spec.export_outputs["serving_default"].outputs)

  # TFHub doesn't support the following collections.
  drop_collections = [tf.GraphKeys.LOSSES,
                      tf.GraphKeys.SUMMARIES, tf.GraphKeys.LOCAL_VARIABLES]
  module_spec = hub.create_module_spec(
      hub_module_fn, drop_collections=drop_collections)
  # Loads the weights from the checkpoint using the model above
  # and saves it in the export_path.
  export_module_spec_with_checkpoint(
      module_spec,
      checkpoint_path=checkpoint_path,
      export_path=export_dir,
      scope_prefix="")
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:51,代码来源:export.py


示例19: testExportedConsumerModelWorksIfItUsesHubModuleWithAssets

 def testExportedConsumerModelWorksIfItUsesHubModuleWithAssets(self):
   # 1. Create and export a module with assets.
   module_export_path = os.path.join(self.get_temp_dir(), "small-module")
   vocabulary_file = self.create_vocab_file("tokens.txt",
                                            ["emerson", "lake", "palmer"])
   assets_module_fn = create_assets_module_fn(vocabulary_file)
   spec = hub.create_module_spec(assets_module_fn)
   with tf.Graph().as_default():
     small_module = hub.Module(spec)
     with tf.Session() as sess:
       small_module.export(module_export_path, sess)
   # 2. Remove the original vocab file and move the module to another location.
   tf.gfile.Remove(vocabulary_file)
   inner_module_path = os.path.join(self.get_temp_dir(), "inner-module")
   tf.gfile.Rename(module_export_path, inner_module_path)
   del module_export_path
   # 3. Use the module in a consumer model (which is another module here).
   module_export_path = os.path.join(self.get_temp_dir(), "consumer-module")
   consumer_module_fn = create_consumer_module_fn(inner_module_path)
   spec = hub.create_module_spec(consumer_module_fn)
   with tf.Graph().as_default():
     consumer_module = hub.Module(spec)
     with tf.Session() as sess:
       consumer_module.export(module_export_path, sess)
   # 4. Delete the inner module on disk and move the consumer model to a final
   # location for serving.
   tf.gfile.DeleteRecursively(inner_module_path)
   module_serving_path = os.path.join(self.get_temp_dir(), "serving-module")
   tf.gfile.Rename(module_export_path, module_serving_path)
   # 5. Make sure the model can be served successfully.
   with tf.Graph().as_default():
     serving_module = hub.Module(module_serving_path)
     output = serving_module(tf.constant([1, 2], dtype=tf.int64))
     with tf.Session() as sess:
       sess.run(tf.tables_initializer())
       self.assertAllEqual(list(sess.run(output)), [b"lake", b"palmer"])
开发者ID:jankim,项目名称:hub,代码行数:36,代码来源:native_module_test.py


示例20: testVariableColocationPropagation

 def testVariableColocationPropagation(self):
   spec = hub.create_module_spec(stateful_module_fn_with_colocation)
   m = hub.Module(spec)
   u1 = tf.constant(1, name="u1")
   u2 = tf.constant(2, name="u2")
   with tf.colocate_with(u1), tf.colocate_with(u2):
     x = tf.constant(100.0, name="x")
   y = m(x)
   self.assertItemsEqual(y.op.colocation_groups(),
                         [tf.compat.as_bytes("loc:@module/var123"),
                          tf.compat.as_bytes("loc:@u1"),
                          tf.compat.as_bytes("loc:@u2")])
   with tf.Session() as sess:
     sess.run(tf.global_variables_initializer())
     self.assertEqual(sess.run(y), 101.0)
开发者ID:jankim,项目名称:hub,代码行数:15,代码来源:native_module_test.py



注:本文中的tensorflow_hub.create_module_spec函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python logging.info函数代码示例发布时间:2022-05-27
下一篇:
Python quantize_graph.set_attr_dtype函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap