本文整理汇总了Python中tensorflow_hub.create_module_spec函数的典型用法代码示例。如果您正苦于以下问题:Python create_module_spec函数的具体用法?Python create_module_spec怎么用?Python create_module_spec使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了create_module_spec函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testMultipleApplicationsInDifferentScopes
def testMultipleApplicationsInDifferentScopes(self):
export_path = os.path.join(self.get_temp_dir(), "module-applied-in-scope")
spec = hub.create_module_spec(another_stateful_module_fn)
stateful_module = hub.Module(spec, name="moduleA")
with tf.name_scope("foo"):
with tf.variable_scope("bar"):
times2 = stateful_module(tf.constant([2.0]))
with tf.name_scope("baz"):
times3 = stateful_module(tf.constant([3.0]))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(sess.run(times2), [6.0])
self.assertAllClose(sess.run(times3), [9.0])
self.assertEqual(len(stateful_module.variable_map), 1)
self.assertEquals(
stateful_module.variable_map["iamtheoneandonly"].name,
"moduleA/iamtheoneandonly:0")
stateful_module.export(export_path, sess)
# Check minimal functionality of the exported module.
tf.reset_default_graph()
stateful_module = hub.Module(export_path, name="moduleB")
times2 = stateful_module(tf.constant([2.0]))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(sess.run(times2), [6.0])
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py
示例2: testApplyStatefulModuleMultipleTimes
def testApplyStatefulModuleMultipleTimes(self):
export_path = os.path.join(self.get_temp_dir(), "another-module")
with tf.Session() as sess:
spec = hub.create_module_spec(another_stateful_module_fn)
stateful_module = hub.Module(spec, trainable=True)
times2 = stateful_module(tf.constant([2.0]))
times3 = stateful_module(tf.constant([3.0]))
step = tf.Variable(0, trainable=False, name="global_step")
# Training will adapt the hidden variable to be approximately 2:
train = tf.contrib.layers.optimize_loss(
loss=tf.losses.mean_squared_error(times2, [4.0]),
global_step=step,
learning_rate=0.05,
optimizer="SGD")
sess.run(tf.global_variables_initializer())
for _ in range(50):
sess.run(train)
self.assertAllClose(sess.run(times2), [4.0])
self.assertAllClose(sess.run(times3), [6.0])
stateful_module.export(export_path, sess)
with tf.Session() as sess:
stateful_module = hub.Module(export_path)
times4 = stateful_module(tf.constant([4.0]))
times5 = stateful_module(tf.constant([5.0]))
sess.run(tf.global_variables_initializer())
self.assertAllClose(sess.run(times4), [8.0])
self.assertAllClose(sess.run(times5), [10.0])
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py
示例3: testClearControlDependenciesForModuleStateButNotApplyGraphs
def testClearControlDependenciesForModuleStateButNotApplyGraphs(self):
module_spec = hub.create_module_spec(stateless_module_fn)
with tf.Graph().as_default() as g1:
v = tf.placeholder(dtype=tf.int64, name="v")
m = hub.Module(module_spec)
m(v)
with tf.Graph().as_default() as g2:
v = tf.placeholder(dtype=tf.int64, name="v")
with tf.control_dependencies([v]):
m = hub.Module(module_spec)
m(v)
self.assertEqual(g1.as_graph_def(), g2.as_graph_def())
with tf.Graph().as_default() as g3:
v = tf.placeholder(dtype=tf.int64, name="v")
m = hub.Module(module_spec)
m(v)
with tf.Graph().as_default() as g4:
v = tf.placeholder(dtype=tf.int64, name="v")
m = hub.Module(module_spec)
with tf.control_dependencies([v]):
m(v)
self.assertNotEqual(g3.as_graph_def(), g4.as_graph_def())
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py
示例4: testModuleWithRegularizedLayers
def testModuleWithRegularizedLayers(self):
# The linear map y = Mx + b with L2 regularization on M and b
# when trained at x = [1,1] with L2 loss towards the target y' = [4,4]
# learns M = [[1,1],[1,1]], b = [1,1], y = [3,3], with eight balanced
# loss terms: the elements of M, b, and y' - y are all distance 1 from zero.
train_input = [[1.0, 1.0]]
target = [[4.0, 4.0]]
spec = hub.create_module_spec(layers_module_fn)
with tf.Graph().as_default():
m = hub.Module(spec, trainable=True)
x = tf.placeholder(dtype=tf.float32)
y = m(x)
squared_loss = tf.losses.mean_squared_error(y, target, weights=2.0)
# Recover REGULARIZATION_LOSSES from the module.
total_loss = squared_loss + tf.losses.get_regularization_loss()
step = tf.Variable(0, trainable=False, name="global_step")
train = tf.contrib.layers.optimize_loss(
loss=total_loss, global_step=step, learning_rate=0.1, optimizer="SGD")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(50):
sess.run(train, feed_dict={x: train_input})
# Verify M = [[1,1],[1,1]], b = [1,1] by evaluating at three points.
# Without regularization, the result would be an underdetermined mess.
out = sess.run(y, feed_dict={x: [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]]})
self.assertAllClose(
out, [[1.0, 1.0], [2.0, 2.0], [2.0, 2.0]], atol=0.001)
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py
示例5: testUpdateOps
def testUpdateOps(self):
spec = hub.create_module_spec(update_ops_module_fn)
with tf.Session() as sess:
trainable_module = hub.Module(spec, trainable=True)
fixed_module = hub.Module(spec, trainable=False)
# TODO(b/62433105): Understand what is the desired behaviour of UPDATE_OPS
# and applying a Module multiple times. For now UPDATE_OPS probably only
# do something reasonable if each Module is applied exactly one time.
trainable_module()
fixed_module()
variable = tf.Variable(0.0)
step = tf.Variable(0, trainable=False, name="global_step")
train_op = tf.contrib.layers.optimize_loss(
variable,
global_step=step,
learning_rate=0.1,
optimizer="SGD")
sess.run(tf.global_variables_initializer())
sess.run(train_op)
trainable_module_vars = list(trainable_module.variable_map.values())
self.assertEqual(len(trainable_module_vars), 1)
self.assertEqual(sess.run(trainable_module_vars[0]), 1)
fixed_module_vars = list(fixed_module.variable_map.values())
self.assertEqual(len(fixed_module_vars), 1)
self.assertEqual(sess.run(fixed_module_vars[0]), 0)
开发者ID:jankim,项目名称:hub,代码行数:28,代码来源:native_module_test.py
示例6: testDuplicateAssetCopy
def testDuplicateAssetCopy(self):
export_path = os.path.join(self.get_temp_dir(), "assets-module")
def module_with_duplicate_asset():
vocabulary_file = self.create_vocab_file("tokens2.txt", ["1", "2", "3"])
indices1 = tf.placeholder(dtype=tf.int64, name="indices1")
indices2 = tf.placeholder(dtype=tf.int64, name="indices2")
hub.add_signature(
inputs={
"indices_1": indices1,
"indices_2": indices2,
},
outputs={
"x": do_table_lookup(indices1, vocabulary_file),
"y": do_table_lookup(indices2, vocabulary_file),
})
with tf.Graph().as_default():
spec = hub.create_module_spec(module_with_duplicate_asset)
module_a = hub.Module(spec)
module_a({"indices_1": tf.constant([1, 2], dtype=tf.int64),
"indices_2": tf.constant([1, 2], dtype=tf.int64)}, as_dict=True)
with tf.Session() as sess:
sess.run(tf.tables_initializer())
module_a.export(export_path, sess)
开发者ID:jankim,项目名称:hub,代码行数:25,代码来源:native_module_test.py
示例7: testLoadModuleFromFuncDef
def testLoadModuleFromFuncDef(self):
with tf.Session() as sess:
v = tf.placeholder(tf.int64)
spec = hub.create_module_spec(stateless_module_fn)
m = hub.Module(spec)
y = m(v)
self.assertEqual(sess.run(y, feed_dict={v: 10}), 100)
开发者ID:jankim,项目名称:hub,代码行数:7,代码来源:native_module_test.py
示例8: test_module_export_vocab_on_custom_fs
def test_module_export_vocab_on_custom_fs(self):
root_dir = "file://%s" % self.get_temp_dir()
export_dir = "%s_%s" % (root_dir, "export")
tf.gfile.MakeDirs(export_dir)
# Create a module with a vocab file located on a custom filesystem.
vocab_dir = os.path.join(root_dir, "vocab_location")
tf.gfile.MakeDirs(vocab_dir)
vocab_filename = os.path.join(vocab_dir, "tokens.txt")
tf_utils.atomic_write_string_to_file(vocab_filename, "one", False)
def create_assets_module_fn():
def assets_module_fn():
indices = tf.placeholder(dtype=tf.int64, name="indices")
table = tf.contrib.lookup.index_to_string_table_from_file(
vocabulary_file=vocab_filename, default_value="UNKNOWN")
outputs = table.lookup(indices)
hub.add_signature(inputs=indices, outputs=outputs)
return assets_module_fn
with tf.Graph().as_default():
assets_module_fn = create_assets_module_fn()
spec = hub.create_module_spec(assets_module_fn)
embedding_module = hub.Module(spec)
with tf.Session() as sess:
sess.run(tf.tables_initializer())
embedding_module.export(export_dir, sess)
module_files = tf.gfile.ListDirectory(export_dir)
self.assertListEqual(
["assets", "saved_model.pb", "tfhub_module.pb", "variables"],
sorted(module_files))
module_files = tf.gfile.ListDirectory(os.path.join(export_dir, "assets"))
self.assertListEqual(["tokens.txt"], module_files)
开发者ID:jankim,项目名称:hub,代码行数:35,代码来源:e2e_test.py
示例9: testUnusedInputModule
def testUnusedInputModule(self):
with tf.Session() as sess:
v1 = tf.placeholder(tf.int64)
v2 = tf.placeholder(tf.int64)
spec = hub.create_module_spec(unused_input_module_fn)
m = hub.Module(spec)
out = m({"x": v1, "unused": v2})
self.assertEqual(sess.run(out, feed_dict={v1: 10, v2: 4}), 100)
开发者ID:jankim,项目名称:hub,代码行数:8,代码来源:native_module_test.py
示例10: testVariables
def testVariables(self):
spec = hub.create_module_spec(stateful_module_fn)
m = hub.Module(spec, name="test")
out = m()
self.assertEqual(list(m.variable_map.keys()), ["var123"])
self.assertEqual(m.variable_map["var123"].name, "test/var123:0")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(sess.run(out), [1.0, 2.0, 3.0])
开发者ID:jankim,项目名称:hub,代码行数:9,代码来源:native_module_test.py
示例11: testMultipleOutputs
def testMultipleOutputs(self):
with tf.Session() as sess:
spec = hub.create_module_spec(multiple_outputs_module_fn)
m = hub.Module(spec)
output = m(tf.constant([2.0]), as_dict=True)
output1 = output["y"]
output2 = output["z"]
sess.run(tf.global_variables_initializer())
self.assertAllClose(sess.run(output1), [6.0])
self.assertAllClose(sess.run(output2), [18.0])
开发者ID:jankim,项目名称:hub,代码行数:10,代码来源:native_module_test.py
示例12: testConvertToTensor
def testConvertToTensor(self):
spec = hub.create_module_spec(stateless_module_fn)
with tf.Session() as sess:
m = hub.Module(spec)
y = m([10, 2])
self.assertAllEqual(sess.run(y), [100, 4])
with tf.Session() as sess:
m = hub.Module(spec)
with self.assertRaises(TypeError):
m("hello")
开发者ID:jankim,项目名称:hub,代码行数:10,代码来源:native_module_test.py
示例13: testLargePartitionedVariables
def testLargePartitionedVariables(self):
spec = hub.create_module_spec(
create_partitioned_variable_module_fn(partitions=25, shape=[600, 3]))
m = hub.Module(spec, name="test")
out = m()
self.assertEqual(len(m.variable_map), 2)
self.assertEqual(len(m.variable_map["partitioned_variable"]), 25)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(sess.run(out), 2 * np.ones([600, 3]))
开发者ID:jankim,项目名称:hub,代码行数:10,代码来源:native_module_test.py
示例14: _testReluModule
def _testReluModule(self, module_fn):
spec = hub.create_module_spec(module_fn)
with tf.Graph().as_default():
with tf.Session() as sess:
x = tf.placeholder(dtype=tf.float32, name="x")
relu_module = hub.Module(spec)
y = relu_module(x)
self.assertAllClose(sess.run(y, {x: 9.1}), 9.1)
self.assertAllClose(sess.run(y, {x: -2.4}), 0.0)
grad = tf.gradients([y], [x])
self.assertAllClose(sess.run(grad, {x: 2}), [1.0])
self.assertAllClose(sess.run(grad, {x: -2}), [0.0])
开发者ID:jankim,项目名称:hub,代码行数:12,代码来源:native_module_test.py
示例15: testWhileModule
def testWhileModule(self):
spec = hub.create_module_spec(while_module_fn)
with tf.Graph().as_default():
with tf.Session() as sess:
x = tf.placeholder(tf.float32)
n = tf.placeholder(tf.int32)
pow_module = hub.Module(spec)
y = pow_module({"x": x, "n": n})
self.assertAllClose(sess.run(y, {x: 9.1, n: 1}), 9.1)
self.assertAllClose(sess.run(y, {x: 2.4, n: 2}), 5.76)
grad = tf.gradients([y], [x])
self.assertAllClose(sess.run(grad, {x: 2, n: 3}), [12.0])
开发者ID:jankim,项目名称:hub,代码行数:12,代码来源:native_module_test.py
示例16: testModuleWithMultipleSignatures
def testModuleWithMultipleSignatures(self):
spec = hub.create_module_spec(multiple_signature_module_fn)
module_a = hub.Module(spec, name="moduleA")
in_tensor = tf.placeholder(dtype=tf.float32)
out_tensor_a = module_a(in_tensor, signature="mul")
out_tensor_b = module_a(out_tensor_a, signature="div")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
in_values = [6, 3, 1]
self.assertAllClose(
sess.run(out_tensor_b, feed_dict={in_tensor: in_values}), in_values)
开发者ID:jankim,项目名称:hub,代码行数:12,代码来源:native_module_test.py
示例17: export_module
def export_module(path):
spec = hub.create_module_spec(half_plus_two)
with tf.Graph().as_default():
module = hub.Module(spec)
init_a = tf.assign(module.variable_map["a"], 0.5)
init_b = tf.assign(module.variable_map["b"], 2.0)
init_vars = tf.group([init_a, init_b])
with tf.Session() as session:
session.run(init_vars)
module.export(path, session)
开发者ID:jankim,项目名称:hub,代码行数:13,代码来源:export.py
示例18: export_as_tfhub_module
def export_as_tfhub_module(model_name,
hparams,
decode_hparams,
problem,
checkpoint_path,
export_dir):
"""Exports the last checkpoint from the directory as tfhub module.
It creates the Module spec and signature (based on T2T problem information),
which is later used to create and export the hub module.
Module will be saved inside the ckpt_dir.
Args:
model_name: name of the model to be exported.
hparams: T2T parameters, model graph will be based on them.
decode_hparams: T2T parameters for decoding.
problem: the name of the problem
checkpoint_path: path to the checkpoint to be exported.
export_dir: Directory to write the exported model to.
"""
def hub_module_fn():
"""Creates the TF graph for the hub module."""
model_fn = t2t_model.T2TModel.make_estimator_model_fn(
model_name,
hparams,
decode_hparams=decode_hparams,
use_tpu=FLAGS.use_tpu)
features = problem.serving_input_fn(hparams).features
# we must do a copy of the features, as the model_fn can add additional
# entries there (like hyperparameter settings etc).
original_features = features.copy()
spec = model_fn(features, labels=None, mode=tf.estimator.ModeKeys.PREDICT)
hub.add_signature(
inputs=original_features,
outputs=spec.export_outputs["serving_default"].outputs)
# TFHub doesn't support the following collections.
drop_collections = [tf.GraphKeys.LOSSES,
tf.GraphKeys.SUMMARIES, tf.GraphKeys.LOCAL_VARIABLES]
module_spec = hub.create_module_spec(
hub_module_fn, drop_collections=drop_collections)
# Loads the weights from the checkpoint using the model above
# and saves it in the export_path.
export_module_spec_with_checkpoint(
module_spec,
checkpoint_path=checkpoint_path,
export_path=export_dir,
scope_prefix="")
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:51,代码来源:export.py
示例19: testExportedConsumerModelWorksIfItUsesHubModuleWithAssets
def testExportedConsumerModelWorksIfItUsesHubModuleWithAssets(self):
# 1. Create and export a module with assets.
module_export_path = os.path.join(self.get_temp_dir(), "small-module")
vocabulary_file = self.create_vocab_file("tokens.txt",
["emerson", "lake", "palmer"])
assets_module_fn = create_assets_module_fn(vocabulary_file)
spec = hub.create_module_spec(assets_module_fn)
with tf.Graph().as_default():
small_module = hub.Module(spec)
with tf.Session() as sess:
small_module.export(module_export_path, sess)
# 2. Remove the original vocab file and move the module to another location.
tf.gfile.Remove(vocabulary_file)
inner_module_path = os.path.join(self.get_temp_dir(), "inner-module")
tf.gfile.Rename(module_export_path, inner_module_path)
del module_export_path
# 3. Use the module in a consumer model (which is another module here).
module_export_path = os.path.join(self.get_temp_dir(), "consumer-module")
consumer_module_fn = create_consumer_module_fn(inner_module_path)
spec = hub.create_module_spec(consumer_module_fn)
with tf.Graph().as_default():
consumer_module = hub.Module(spec)
with tf.Session() as sess:
consumer_module.export(module_export_path, sess)
# 4. Delete the inner module on disk and move the consumer model to a final
# location for serving.
tf.gfile.DeleteRecursively(inner_module_path)
module_serving_path = os.path.join(self.get_temp_dir(), "serving-module")
tf.gfile.Rename(module_export_path, module_serving_path)
# 5. Make sure the model can be served successfully.
with tf.Graph().as_default():
serving_module = hub.Module(module_serving_path)
output = serving_module(tf.constant([1, 2], dtype=tf.int64))
with tf.Session() as sess:
sess.run(tf.tables_initializer())
self.assertAllEqual(list(sess.run(output)), [b"lake", b"palmer"])
开发者ID:jankim,项目名称:hub,代码行数:36,代码来源:native_module_test.py
示例20: testVariableColocationPropagation
def testVariableColocationPropagation(self):
spec = hub.create_module_spec(stateful_module_fn_with_colocation)
m = hub.Module(spec)
u1 = tf.constant(1, name="u1")
u2 = tf.constant(2, name="u2")
with tf.colocate_with(u1), tf.colocate_with(u2):
x = tf.constant(100.0, name="x")
y = m(x)
self.assertItemsEqual(y.op.colocation_groups(),
[tf.compat.as_bytes("loc:@module/var123"),
tf.compat.as_bytes("loc:@u1"),
tf.compat.as_bytes("loc:@u2")])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self.assertEqual(sess.run(y), 101.0)
开发者ID:jankim,项目名称:hub,代码行数:15,代码来源:native_module_test.py
注:本文中的tensorflow_hub.create_module_spec函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论