• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tf_inspect.getfullargspec函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.util.tf_inspect.getfullargspec函数的典型用法代码示例。如果您正苦于以下问题:Python getfullargspec函数的具体用法?Python getfullargspec怎么用?Python getfullargspec使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了getfullargspec函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _call_and_compute_mask

  def _call_and_compute_mask(self, inputs, training=None, mask=None):
    if not self.built and self._is_graph_network:
      self._init_graph_network(self.inputs, self.outputs, name=self.name)

    x = inputs
    for layer in self.layers:
      kwargs = {}
      if 'mask' in tf_inspect.getfullargspec(layer.call).args:
        kwargs['mask'] = mask
      if 'training' in tf_inspect.getfullargspec(layer.call).args:
        kwargs['training'] = training

      if isinstance(layer, Network) and layer._compute_output_and_mask_jointly:
        x, mask = layer._call_and_compute_mask(x, **kwargs)
      else:
        if not layer.built:
          # Build layer if applicable.
          with ops.name_scope(layer._name_scope()):
            layer._maybe_build(x)
          layer.built = True
        x = layer.call(x, **kwargs)
        if layer.supports_masking:
          mask = layer.compute_mask(x, mask)
        else:
          mask = None
      if not context.executing_eagerly():
        x._keras_mask = mask
    return x, mask
开发者ID:aeverall,项目名称:tensorflow,代码行数:28,代码来源:sequential.py


示例2: test_class_alias

  def test_class_alias(self, mock_warning):
    class MyClass(object):
      """My docstring."""

      init_args = []

      def __init__(self, arg):
        MyClass.init_args.append(arg)

    deprecated_cls = deprecation.deprecated_alias("deprecated.cls",
                                                  "real.cls",
                                                  MyClass)

    print(deprecated_cls.__name__)
    print(deprecated_cls.__module__)
    print(deprecated_cls.__doc__)

    MyClass("test")
    self.assertEqual(0, mock_warning.call_count)
    deprecated_cls("deprecated")
    self.assertEqual(1, mock_warning.call_count)
    # Make sure the error points to the right file.
    self.assertRegexpMatches(mock_warning.call_args[0][1],
                             r"deprecation_test\.py:")
    deprecated_cls("deprecated again")
    self.assertEqual(1, mock_warning.call_count)

    self.assertEqual(["test", "deprecated", "deprecated again"],
                     MyClass.init_args)

    # Check __init__ signature matches for doc generation.
    self.assertEqual(
        tf_inspect.getfullargspec(MyClass.__init__),
        tf_inspect.getfullargspec(deprecated_cls.__init__))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:34,代码来源:deprecation_test.py


示例3: __init__

 def __init__(self, original_op, ragged_op, ragged_args):
   op_arg_names = tf_inspect.getfullargspec(original_op)[0]
   ragged_arg_names = tf_inspect.getfullargspec(ragged_op)[0]
   if op_arg_names != ragged_arg_names:
     raise AssertionError(
         'Signature must exactly match when overriding %s with %s: %s vs %s' %
         (original_op, ragged_op, op_arg_names, ragged_arg_names))
   self._ragged_op = ragged_op
   self._ragged_args = _get_arg_infos(ragged_op, ragged_args)
   if _UPDATE_DOCSTRINGS:
     arg_list = ' and '.join('`%s`' % arg for arg in ragged_args)
     original_op.__doc__ = (
         original_op.__doc__.rstrip() + '\n\n' +
         '    {0} may be a `tf.RaggedTensor`.\n'.format(arg_list))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:14,代码来源:ragged_dispatch.py


示例4: test_decorator_preserves_argspec

  def test_decorator_preserves_argspec(self):

    class TestClass(object):

      def called_member(self, a):
        if a < 0:
          a = -a
        return a

      called_member_converted = api.convert()(called_member)

    tc = TestClass()
    self.assertListEqual(
        list(tf_inspect.getfullargspec(tc.called_member)),
        list(tf_inspect.getfullargspec(tc.called_member_converted)))
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:15,代码来源:api_test.py


示例5: __init__

  def __init__(self, func, trainable=False, arguments=None, **kwargs):
    # Set self._{non,}_trainable_weights before calling Layer.__init__.
    if hasattr(func, 'trainable_variables'):
      self._trainable_weights = [v for v in func.trainable_variables]
      trainable_variables_set = set(func.trainable_variables)
    else:
      self._trainable_weights = []
      trainable_variables_set = set()
    if hasattr(func, 'variables'):
      self._non_trainable_weights = [v for v in func.variables
                                     if v not in trainable_variables_set]
    else:
      self._non_trainable_weights = []  # TODO(arnoegw): Infer from `func`.

    # TODO(b/124219898): We should be able to get the embedding dimension from
    # the restored model.
    if 'output_shape' in kwargs:
      self._output_shape = tuple(kwargs.pop('output_shape'))

    super(CustomLayer, self).__init__(trainable=trainable, **kwargs)
    # Prepare to call `func`.
    self._func = func
    self._func_fullargspec = tf_inspect.getfullargspec(func.__call__)
    self._func_wants_training = (
        'training' in self._func_fullargspec.args or
        'training' in self._func_fullargspec.kwonlyargs)
    self._arguments = arguments or {}
    # Forward the callable's regularization losses (if any).
    if hasattr(func, 'regularization_losses'):
      for l in func.regularization_losses:
        if not callable(l):
          raise ValueError(
              'CustomLayer(func) expects func.regularization_losses to be an '
              'iterable of callables, each returning a scalar loss term.')
        self.add_loss(l)  # Supports callables.
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:35,代码来源:util.py


示例6: decorated

  def decorated(self, **kwargs):
    """A wrapped test method that treats some arguments in a special way."""
    mode = kwargs.pop("mode", "graph")

    distribution = kwargs.get("distribution", None)
    required_tpu = kwargs.pop("required_tpu", False)
    required_gpus = kwargs.pop("required_gpus", None)

    if distribution:
      assert required_gpus is None, (
          "Do not use `required_gpus` and `distribution` together.")
      assert required_tpu is False, (
          "Do not use `required_tpu` and `distribution` together.")
      required_gpus = distribution.required_gpus
      required_tpu = distribution.required_tpu

    if required_tpu and not TPU_TEST:
      self.skipTest("Test requires a TPU, but it's not available.")
    if not required_tpu and TPU_TEST:
      self.skipTest("Test that doesn't require a TPU.")

    if not required_gpus:
      if GPU_TEST:
        self.skipTest("Test that doesn't require GPUs.")
    elif context.num_gpus() < required_gpus:
      self.skipTest(
          "{} GPUs are not available for this test. {} GPUs are available".
          format(required_gpus, context.num_gpus()))

    # At this point, `kwargs` doesn't have `required_gpus` or `required_tpu`
    # that the user might have specified.  `kwargs` still has `mode`, which
    # the test is allowed to accept or ignore.
    requested_arguments = tf_inspect.getfullargspec(test_method).args
    missing_arguments = set(list(kwargs.keys()) + ["self"]).difference(
        set(requested_arguments + ["mode"]))
    if missing_arguments:
      raise ValueError("The test is missing arguments {} .".format(
          missing_arguments))

    kwargs_to_pass = {}
    for arg in requested_arguments:
      if arg == "self":
        kwargs_to_pass[arg] = self
      else:
        kwargs_to_pass[arg] = kwargs[arg]

    if mode == "eager":
      with ops.Graph().as_default(), context.eager_mode():
        if distribution:
          kwargs_to_pass["distribution"] = distribution.strategy
        test_method(**kwargs_to_pass)
    elif mode == "graph":
      with ops.Graph().as_default(), context.graph_mode():
        if distribution:
          kwargs_to_pass["distribution"] = distribution.strategy
        test_method(**kwargs_to_pass)
    else:
      raise ValueError(
          "'mode' has to be either 'eager' or 'graph' and not {}".format(
              mode))
开发者ID:sonnyhu,项目名称:tensorflow,代码行数:60,代码来源:combinations.py


示例7: array_to_img

def array_to_img(x, data_format=None, scale=True, dtype=None):
  """Converts a 3D Numpy array to a PIL Image instance.

  Arguments:
      x: Input Numpy array.
      data_format: Image data format.
          either "channels_first" or "channels_last".
      scale: Whether to rescale image values
          to be within `[0, 255]`.
      dtype: Dtype to use.

  Returns:
      A PIL Image instance.

  Raises:
      ImportError: if PIL is not available.
      ValueError: if invalid `x` or `data_format` is passed.
  """

  if data_format is None:
    data_format = backend.image_data_format()
  kwargs = {}
  if 'dtype' in tf_inspect.getfullargspec(image.array_to_img)[0]:
    if dtype is None:
      dtype = backend.floatx()
    kwargs['dtype'] = dtype
  return image.array_to_img(x, data_format=data_format, scale=scale, **kwargs)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:27,代码来源:image.py


示例8: __init__

 def __init__(self, x, y, image_data_generator,
              batch_size=32,
              shuffle=False,
              sample_weight=None,
              seed=None,
              data_format=None,
              save_to_dir=None,
              save_prefix='',
              save_format='png',
              subset=None,
              dtype=None):
   if data_format is None:
     data_format = backend.image_data_format()
   kwargs = {}
   if 'dtype' in tf_inspect.getfullargspec(
       image.NumpyArrayIterator.__init__)[0]:
     if dtype is None:
       dtype = backend.floatx()
     kwargs['dtype'] = dtype
   super(NumpyArrayIterator, self).__init__(
       x, y, image_data_generator,
       batch_size=batch_size,
       shuffle=shuffle,
       sample_weight=sample_weight,
       seed=seed,
       data_format=data_format,
       save_to_dir=save_to_dir,
       save_prefix=save_prefix,
       save_format=save_format,
       subset=subset,
       **kwargs)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:31,代码来源:image.py


示例9: testGetFullArgsSpecForPartial

  def testGetFullArgsSpecForPartial(self):

    def func(a, b):
      del a, b

    partial_function = functools.partial(func, 1)
    argspec = tf_inspect.FullArgSpec(
        args=['b'], varargs=None, varkw=None, defaults=None,
        kwonlyargs=[], kwonlydefaults=None, annotations={})

    self.assertEqual(argspec, tf_inspect.getfullargspec(partial_function))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:11,代码来源:tf_inspect_test.py


示例10: testPositionsMatchArgGiven

 def testPositionsMatchArgGiven(self):
   full_dict = tf_upgrade_v2.TFAPIChangeSpec().function_arg_warnings
   method_names = full_dict.keys()
   for method in method_names:
     # doesn't test methods on objects
     if not method.startswith("*."):
       args = full_dict[method].keys()
       method = get_symbol_for_name(tf, method)
       arg_spec = tf_inspect.getfullargspec(method)
       for (arg, pos) in args:
         self.assertEqual(arg_spec[0][pos], arg)
开发者ID:rthangam,项目名称:tensorflow,代码行数:11,代码来源:tf_upgrade_v2_test.py


示例11: testGetFullArgSpecOnDecoratorThatChangesFullArgSpec

  def testGetFullArgSpecOnDecoratorThatChangesFullArgSpec(self):
    argspec = tf_inspect.FullArgSpec(
        args=['a', 'b', 'c'],
        varargs=None,
        varkw=None,
        defaults=(1, 'hello'),
        kwonlyargs=[],
        kwonlydefaults=None,
        annotations={})

    decorator = tf_decorator.TFDecorator('', test_undecorated_function, '',
                                         argspec)
    self.assertEqual(argspec, tf_inspect.getfullargspec(decorator))
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:13,代码来源:tf_inspect_test.py


示例12: testGetFullArgSpecIgnoresDecoratorsThatDontProvideFullArgSpec

  def testGetFullArgSpecIgnoresDecoratorsThatDontProvideFullArgSpec(self):
    argspec = tf_inspect.FullArgSpec(
        args=['a', 'b', 'c'],
        varargs=None,
        varkw=None,
        defaults=(1, 'hello'),
        kwonlyargs=[],
        kwonlydefaults=None,
        annotations={})

    inner_decorator = tf_decorator.TFDecorator('', test_undecorated_function,
                                               '', argspec)
    outer_decorator = tf_decorator.TFDecorator('', inner_decorator)
    self.assertEqual(argspec, tf_inspect.getfullargspec(outer_decorator))
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:14,代码来源:tf_inspect_test.py


示例13: _call_and_compute_mask

  def _call_and_compute_mask(self, inputs, training=None, mask=None):
    if not self.built:
      self.build(inputs.shape)

    x = inputs
    for layer in self.layers:
      kwargs = {}
      if 'mask' in tf_inspect.getfullargspec(layer.call).args:
        kwargs['mask'] = mask
      if 'training' in tf_inspect.getfullargspec(layer.call).args:
        kwargs['training'] = training

      if isinstance(layer, Network) and layer._compute_output_and_mask_jointly:
        x, mask = layer._call_and_compute_mask(x, **kwargs)
      else:
        x = layer.call(x, **kwargs)
        if layer.supports_masking:
          mask = layer.compute_mask(x, mask)
        else:
          mask = None
      if not context.executing_eagerly():
        x._keras_mask = mask
    return x, mask
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:23,代码来源:sequential.py


示例14: deserialize_keras_object

def deserialize_keras_object(identifier,
                             module_objects=None,
                             custom_objects=None,
                             printable_module_name='object'):
  if identifier is None:
    return None
  if isinstance(identifier, dict):
    # In this case we are dealing with a Keras config dictionary.
    config = identifier
    (cls, cls_config) = class_and_config_for_serialized_keras_object(
        config, module_objects, custom_objects, printable_module_name)

    if hasattr(cls, 'from_config'):
      arg_spec = tf_inspect.getfullargspec(cls.from_config)
      custom_objects = custom_objects or {}

      if 'custom_objects' in arg_spec.args:
        return cls.from_config(
            cls_config,
            custom_objects=dict(
                list(_GLOBAL_CUSTOM_OBJECTS.items()) +
                list(custom_objects.items())))
      with CustomObjectScope(custom_objects):
        return cls.from_config(cls_config)
    else:
      # Then `cls` may be a function returning a class.
      # in this case by convention `config` holds
      # the kwargs of the function.
      custom_objects = custom_objects or {}
      with CustomObjectScope(custom_objects):
        return cls(**cls_config)
  elif isinstance(identifier, six.string_types):
    object_name = identifier
    if custom_objects and object_name in custom_objects:
      obj = custom_objects.get(object_name)
    elif object_name in _GLOBAL_CUSTOM_OBJECTS:
      obj = _GLOBAL_CUSTOM_OBJECTS[object_name]
    else:
      obj = module_objects.get(object_name)
      if obj is None:
        raise ValueError('Unknown ' + printable_module_name + ':' + object_name)
    # Classes passed by name are instantiated with no args, functions are
    # returned as-is.
    if tf_inspect.isclass(obj):
      return obj()
    return obj
  else:
    raise ValueError('Could not interpret serialized ' + printable_module_name +
                     ': ' + identifier)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:49,代码来源:generic_utils.py


示例15: has_arg

def has_arg(fn, name, accept_all=False):
  """Checks if a callable accepts a given keyword argument.

  Arguments:
      fn: Callable to inspect.
      name: Check if `fn` can be called with `name` as a keyword argument.
      accept_all: What to return if there is no parameter called `name`
                  but the function accepts a `**kwargs` argument.

  Returns:
      bool, whether `fn` accepts a `name` keyword argument.
  """
  arg_spec = tf_inspect.getfullargspec(fn)
  if accept_all and arg_spec.varkw is not None:
    return True
  return name in arg_spec.args
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:16,代码来源:generic_utils.py


示例16: testGetFullArgSpecOnPartialWithVarargs

  def testGetFullArgSpecOnPartialWithVarargs(self):
    """Tests getfullargspec on partial function with variable arguments."""

    def func(m, *arg):
      return m + len(arg)

    partial_func = functools.partial(func, 7, 8)
    argspec = tf_inspect.FullArgSpec(
        args=[],
        varargs='arg',
        varkw=None,
        defaults=None,
        kwonlyargs=[],
        kwonlydefaults=None,
        annotations={})

    self.assertEqual(argspec, tf_inspect.getfullargspec(partial_func))
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:17,代码来源:tf_inspect_test.py


示例17: __init__

  def __init__(self, function, output_shape=None, mask=None, arguments=None,
               **kwargs):
    super(Lambda, self).__init__(**kwargs)
    self.function = function
    self.arguments = arguments if arguments else {}
    if mask is not None:
      self.supports_masking = True
    self.mask = mask
    self._output_shape = output_shape
    self._variable_dict = {}
    # These attributes are inherited from `Layer`.
    self._trainable_weights = []
    self._non_trainable_weights = []

    function_args = tf_inspect.getfullargspec(self.function).args
    self._fn_expects_training_arg = 'training' in function_args
    self._fn_expects_mask_arg = 'mask' in function_args
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:17,代码来源:core.py


示例18: testGetFullArgSpecOnNewClass

  def testGetFullArgSpecOnNewClass(self):

    class NewClass(object):

      def __new__(cls, a, b=1, c='hello'):
        pass

    argspec = tf_inspect.FullArgSpec(
        args=['cls', 'a', 'b', 'c'],
        varargs=None,
        varkw=None,
        defaults=(1, 'hello'),
        kwonlyargs=[],
        kwonlydefaults=None,
        annotations={})

    self.assertEqual(argspec, tf_inspect.getfullargspec(NewClass))
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:17,代码来源:tf_inspect_test.py


示例19: testPositionsMatchArgGiven

 def testPositionsMatchArgGiven(self):
   full_dict = tf_upgrade_v2.TFAPIChangeSpec().function_arg_warnings
   method_names = full_dict.keys()
   for method_name in method_names:
     args = full_dict[method_name].keys()
     # special case for optimizer methods
     if method_name.startswith("*."):
       method = method_name.replace("*", "tf.train.Optimizer")
     else:
       method = method_name
     method = get_symbol_for_name(tf, method)
     arg_spec = tf_inspect.getfullargspec(method)
     for (arg, pos) in args:
       # to deal with the self argument on methods on objects
       if method_name.startswith("*."):
         pos += 1
       self.assertEqual(arg_spec[0][pos], arg)
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:17,代码来源:tf_upgrade_v2_test.py


示例20: testGetFullArgSpecOnPartialNoArgumentsLeft

  def testGetFullArgSpecOnPartialNoArgumentsLeft(self):
    """Tests getfullargspec on partial function that prunes all arguments."""

    def func(m, n):
      return 2 * m + n

    partial_func = functools.partial(func, 7, 10)
    argspec = tf_inspect.FullArgSpec(
        args=[],
        varargs=None,
        varkw=None,
        defaults=None,
        kwonlyargs=[],
        kwonlydefaults=None,
        annotations={})

    self.assertEqual(argspec, tf_inspect.getfullargspec(partial_func))
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:17,代码来源:tf_inspect_test.py



注:本文中的tensorflow.python.util.tf_inspect.getfullargspec函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tf_inspect.getmodule函数代码示例发布时间:2022-05-27
下一篇:
Python tf_inspect.getdoc函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap