本文整理汇总了Python中tensorflow.python.training.training_util.get_or_create_global_step函数的典型用法代码示例。如果您正苦于以下问题:Python get_or_create_global_step函数的具体用法?Python get_or_create_global_step怎么用?Python get_or_create_global_step使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_or_create_global_step函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: run_benchmark
def run_benchmark(sess, init_op, add_op):
"""Returns MB/s rate of addition."""
logdir=FLAGS.logdir_prefix+'/'+FLAGS.name
os.system('mkdir -p '+logdir)
# TODO: make events follow same format as eager writer
writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(logdir+'/events'))
filename = compat.as_text(writer.FileName())
training_util.get_or_create_global_step()
sess.run(init_op)
for step in range(FLAGS.iters):
start_time = time.time()
for i in range(FLAGS.iters_per_step):
sess.run(add_op.op)
elapsed_time = time.time() - start_time
rate = float(FLAGS.iters)*FLAGS.data_mb/elapsed_time
event = make_event('rate', rate, step)
writer.WriteEvent(event)
writer.Flush()
writer.Close()
开发者ID:yaroslavvb,项目名称:stuff,代码行数:25,代码来源:benchmark_grpc_recv.py
示例2: _test_logits_helper
def _test_logits_helper(self, mode):
"""Tests that the expected logits are passed to mock head."""
with ops.Graph().as_default():
training_util.get_or_create_global_step()
generator_inputs = {'x': array_ops.zeros([5, 4])}
real_data = (None if mode == model_fn_lib.ModeKeys.PREDICT else
array_ops.zeros([5, 4]))
generator_scope_name = 'generator'
head = mock_head(self,
expected_generator_inputs=generator_inputs,
expected_real_data=real_data,
generator_scope_name=generator_scope_name)
estimator_spec = estimator._gan_model_fn(
features=generator_inputs,
labels=real_data,
mode=mode,
generator_fn=generator_fn,
discriminator_fn=discriminator_fn,
generator_scope_name=generator_scope_name,
head=head)
with monitored_session.MonitoredTrainingSession(
checkpoint_dir=self._model_dir) as sess:
if mode == model_fn_lib.ModeKeys.TRAIN:
sess.run(estimator_spec.train_op)
elif mode == model_fn_lib.ModeKeys.EVAL:
sess.run(estimator_spec.loss)
elif mode == model_fn_lib.ModeKeys.PREDICT:
sess.run(estimator_spec.predictions)
else:
self.fail('Invalid mode: {}'.format(mode))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:30,代码来源:gan_estimator_test.py
示例3: testGraphSummary
def testGraphSummary(self):
training_util.get_or_create_global_step()
name = 'hi'
graph = graph_pb2.GraphDef(node=(node_def_pb2.NodeDef(name=name),))
with self.test_session():
with self.create_db_writer().as_default():
summary_ops.initialize(graph=graph)
six.assertCountEqual(self, [name],
get_all(self.db, 'SELECT node_name FROM Nodes'))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:9,代码来源:summary_ops_graph_test.py
示例4: testEagerMemory
def testEagerMemory(self):
training_util.get_or_create_global_step()
logdir = self.get_temp_dir()
with summary_ops.create_file_writer(
logdir, max_queue=0,
name='t0').as_default(), summary_ops.always_record_summaries():
summary_ops.generic('tensor', 1, '')
summary_ops.scalar('scalar', 2.0)
summary_ops.histogram('histogram', [1.0])
summary_ops.image('image', [[[[1.0]]]])
summary_ops.audio('audio', [[1.0]], 1.0, 1)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:11,代码来源:summary_ops_test.py
示例5: testSummaryName
def testSummaryName(self):
training_util.get_or_create_global_step()
logdir = tempfile.mkdtemp()
with summary_ops.create_file_writer(
logdir, max_queue=0,
name='t2').as_default(), summary_ops.always_record_summaries():
summary_ops.scalar('scalar', 2.0)
events = summary_test_util.events_from_logdir(logdir)
self.assertEqual(len(events), 2)
self.assertEqual(events[1].summary.value[0].tag, 'scalar')
开发者ID:AnishShah,项目名称:tensorflow,代码行数:12,代码来源:summary_ops_test.py
示例6: testWriteSummaries
def testWriteSummaries(self):
e = SimpleEvaluator(IdentityModel())
e(3.0)
e([5.0, 7.0, 9.0])
training_util.get_or_create_global_step()
logdir = tempfile.mkdtemp()
e.all_metric_results(logdir)
events = summary_test_util.events_from_file(logdir)
self.assertEqual(len(events), 2)
self.assertEqual(events[1].summary.value[0].simple_value, 6.0)
开发者ID:SylChan,项目名称:tensorflow,代码行数:12,代码来源:evaluator_test.py
示例7: testWriteSummaries
def testWriteSummaries(self):
m = metrics.Mean()
m([1, 10, 100])
training_util.get_or_create_global_step()
logdir = tempfile.mkdtemp()
with summary_ops.create_file_writer(
logdir, max_queue=0,
name="t0").as_default(), summary_ops.always_record_summaries():
m.result() # As a side-effect will write summaries.
events = summary_test_util.events_from_logdir(logdir)
self.assertEqual(len(events), 2)
self.assertEqual(events[1].summary.value[0].simple_value, 37.0)
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:13,代码来源:metrics_test.py
示例8: testSummaryOps
def testSummaryOps(self):
training_util.get_or_create_global_step()
logdir = tempfile.mkdtemp()
summary_ops.create_summary_file_writer(logdir, max_queue=0, name='t0')
summary_ops.always_record_summaries()
summary_ops.generic('tensor', 1, '')
summary_ops.scalar('scalar', 2.0)
summary_ops.histogram('histogram', [1.0])
summary_ops.image('image', [[[[1.0]]]])
summary_ops.audio('audio', [[1.0]], 1.0, 1)
# The working condition of the ops is tested in the C++ test so we just
# test here that we're calling them correctly.
self.assertTrue(gfile.Exists(logdir))
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:13,代码来源:summary_ops_test.py
示例9: testWriteSummariesGraph
def testWriteSummariesGraph(self):
with context.graph_mode(), ops.Graph().as_default(), self.test_session():
e = SimpleEvaluator(IdentityModel())
ds = dataset_ops.Dataset.from_tensor_slices([3.0, 5.0, 7.0, 9.0])
training_util.get_or_create_global_step()
logdir = tempfile.mkdtemp()
init_op, call_op, results_op = e.evaluate_on_dataset(
ds, summary_logdir=logdir)
variables.global_variables_initializer().run()
e.run_evaluation(init_op, call_op, results_op)
events = summary_test_util.events_from_file(logdir)
self.assertEqual(len(events), 2)
self.assertEqual(events[1].summary.value[0].simple_value, 6.0)
开发者ID:SylChan,项目名称:tensorflow,代码行数:14,代码来源:evaluator_test.py
示例10: testSummaryGlobalStep
def testSummaryGlobalStep(self):
training_util.get_or_create_global_step()
logdir = self.get_temp_dir()
writer = summary_ops.create_file_writer(logdir, max_queue=0)
with writer.as_default(), summary_ops.always_record_summaries():
summary_ops.scalar('scalar', 2.0)
with self.cached_session() as sess:
sess.run(variables.global_variables_initializer())
sess.run(summary_ops.summary_writer_initializer_op())
step, _ = sess.run(
[training_util.get_global_step(), summary_ops.all_summary_ops()])
events = summary_test_util.events_from_logdir(logdir)
self.assertEqual(2, len(events))
self.assertEqual(step, events[1].step)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:14,代码来源:summary_ops_graph_test.py
示例11: testDefunSummarys
def testDefunSummarys(self):
training_util.get_or_create_global_step()
logdir = tempfile.mkdtemp()
with summary_ops.create_summary_file_writer(
logdir, max_queue=0,
name='t1').as_default(), summary_ops.always_record_summaries():
@function.defun
def write():
summary_ops.scalar('scalar', 2.0)
write()
events = summary_test_util.events_from_logdir(logdir)
self.assertEqual(len(events), 2)
self.assertEqual(events[1].summary.value[0].simple_value, 2.0)
开发者ID:abidrahmank,项目名称:tensorflow,代码行数:15,代码来源:summary_ops_test.py
示例12: setUp
def setUp(self):
self.model_dir = tempfile.mkdtemp()
self.graph = ops.Graph()
with self.graph.as_default():
self.scaffold = monitored_session.Scaffold()
self.global_step = training_util.get_or_create_global_step()
self.train_op = state_ops.assign_add(self.global_step, 1)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:monitors_test.py
示例13: testAgnosticUsage
def testAgnosticUsage(self):
"""Graph/eager agnostic usage."""
# Does create garbage when executing eagerly due to ops.Graph() creation.
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
for training_continuation in range(3):
with test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.AdamOptimizer(0.001)
root = checkpointable_utils.Checkpoint(
optimizer=optimizer, model=model,
global_step=training_util.get_or_create_global_step())
manager = checkpoint_management.CheckpointManager(
root, checkpoint_directory, max_to_keep=1)
status = root.restore(save_path=manager.latest_checkpoint)
input_value = constant_op.constant([[3.]])
train_fn = functools.partial(
optimizer.minimize,
functools.partial(model, input_value),
global_step=root.global_step)
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
manager.save()
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(root.global_step))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:30,代码来源:util_with_v1_optimizers_test.py
示例14: testAgnosticUsage
def testAgnosticUsage(self):
"""Graph/eager agnostic usage."""
# Does create garbage when executing eagerly due to ops.Graph() creation.
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with ops.Graph().as_default(), self.test_session(
graph=ops.get_default_graph()):
network = MyNetwork()
optimizer = CheckpointableAdam(0.001)
root = Checkpoint(
optimizer=optimizer, network=network,
global_step=training_util.get_or_create_global_step())
checkpoint_path = core_saver.latest_checkpoint(checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
input_value = constant_op.constant([[3.]])
train_fn = functools.partial(
optimizer.minimize,
functools.partial(network, input_value),
global_step=root.global_step)
if context.in_graph_mode():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(root.global_step))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
开发者ID:hhu-luqi,项目名称:tensorflow,代码行数:31,代码来源:checkpointable_utils_test.py
示例15: _clone_and_build_model
def _clone_and_build_model(mode,
keras_model,
custom_objects,
features=None,
labels=None):
"""Clone and build the given keras_model.
Args:
mode: training mode.
keras_model: an instance of compiled keras model.
custom_objects: Dictionary for custom objects.
features:
labels:
Returns:
The newly built model.
"""
# Set to True during training, False for inference.
K.set_learning_phase(mode == model_fn_lib.ModeKeys.TRAIN)
# Clone keras model.
input_tensors = None if features is None else _create_ordered_io(
keras_model, features)
if custom_objects:
with CustomObjectScope(custom_objects):
model = models.clone_model(keras_model, input_tensors=input_tensors)
else:
model = models.clone_model(keras_model, input_tensors=input_tensors)
# Compile/Build model
if mode is model_fn_lib.ModeKeys.PREDICT and not model.built:
model.build()
else:
optimizer_config = keras_model.optimizer.get_config()
optimizer = keras_model.optimizer.__class__.from_config(optimizer_config)
optimizer.iterations = training_util.get_or_create_global_step()
# Get list of outputs.
if labels is None:
target_tensors = None
elif isinstance(labels, dict):
target_tensors = _create_ordered_io(keras_model, labels, is_input=False)
else:
target_tensors = [
_cast_tensor_to_floatx(
sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(labels))
]
model.compile(
optimizer,
keras_model.loss,
metrics=keras_model.metrics,
loss_weights=keras_model.loss_weights,
sample_weight_mode=keras_model.sample_weight_mode,
weighted_metrics=keras_model.weighted_metrics,
target_tensors=target_tensors)
if isinstance(model, models.Sequential):
model = model.model
return model
开发者ID:keithc61,项目名称:tensorflow,代码行数:60,代码来源:estimator.py
示例16: testSummaryName
def testSummaryName(self):
training_util.get_or_create_global_step()
logdir = tempfile.mkdtemp()
summary_ops.create_summary_file_writer(logdir, max_queue=0, name='t2')
summary_ops.always_record_summaries()
summary_ops.scalar('scalar', 2.0)
self.assertTrue(gfile.Exists(logdir))
files = gfile.ListDirectory(logdir)
self.assertEqual(len(files), 1)
records = list(tf_record.tf_record_iterator(os.path.join(logdir, files[0])))
self.assertEqual(len(records), 2)
event = event_pb2.Event()
event.ParseFromString(records[1])
self.assertEqual(event.summary.value[0].tag, 'scalar')
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:16,代码来源:summary_ops_test.py
示例17: testGraphDistributionStrategy
def testGraphDistributionStrategy(self):
self.skipTest("b/121381184")
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
def _train_fn(optimizer, model):
input_value = constant_op.constant([[3.]])
return optimizer.minimize(
functools.partial(model, input_value),
global_step=root.optimizer_step)
for training_continuation in range(3):
with ops.Graph().as_default():
strategy = mirrored_strategy.MirroredStrategy()
with strategy.scope():
model = MyModel()
optimizer = adam.AdamOptimizer(0.001)
root = checkpointable_utils.Checkpoint(
optimizer=optimizer, model=model,
optimizer_step=training_util.get_or_create_global_step())
status = root.restore(checkpoint_management.latest_checkpoint(
checkpoint_directory))
train_op = strategy.extended.call_for_each_replica(
functools.partial(_train_fn, optimizer, model))
with self.session() as session:
if training_continuation > 0:
status.assert_consumed()
status.initialize_or_restore()
for _ in range(num_training_steps):
session.run(train_op)
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
root.optimizer_step.numpy())
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:34,代码来源:util_with_v1_optimizers_test.py
示例18: testAgnosticUsage
def testAgnosticUsage(self):
"""Graph/eager agnostic usage."""
# Does create garbage when executing eagerly due to ops.Graph() creation.
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with ops.Graph().as_default(), self.test_session(
graph=ops.get_default_graph()), test_util.device(use_gpu=True):
model = MyModel()
optimizer = adam.AdamOptimizer(0.001)
root = util.Checkpoint(
optimizer=optimizer, model=model,
global_step=training_util.get_or_create_global_step())
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
input_value = constant_op.constant([[3.]])
train_fn = functools.partial(
optimizer.minimize,
functools.partial(model, input_value),
global_step=root.global_step)
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(root.global_step))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
开发者ID:jackd,项目名称:tensorflow,代码行数:32,代码来源:checkpointable_utils_test.py
示例19: test_inv_update_thunks
def test_inv_update_thunks(self):
"""Ensures inverse update ops run once per global_step."""
with self._graph.as_default(), self.test_session() as sess:
fisher_estimator = estimator.FisherEstimator(
damping_fn=lambda: 0.2,
variables=[self.weights],
layer_collection=self.layer_collection,
cov_ema_decay=0.0)
# Construct op that updates one inverse per global step.
global_step = training_util.get_or_create_global_step()
inv_matrices = [
matrix
for fisher_factor in self.layer_collection.get_factors()
for matrix in fisher_factor._inverses_by_damping.values()
]
inv_update_op_thunks = fisher_estimator.inv_update_thunks
inv_update_op = control_flow_ops.case(
[(math_ops.equal(global_step, i), thunk)
for i, thunk in enumerate(inv_update_op_thunks)])
increment_global_step = global_step.assign_add(1)
sess.run(variables.global_variables_initializer())
initial_inv_values = sess.run(inv_matrices)
# Ensure there's one update per inverse matrix. This is true as long as
# there's no fan-in/fan-out or parameter re-use.
self.assertEqual(len(inv_matrices), len(inv_update_op_thunks))
# Test is no-op if only 1 invariance matrix.
assert len(inv_matrices) > 1
# Assign each covariance matrix a value other than the identity. This
# ensures that the inverse matrices are updated to something different as
# well.
cov_matrices = [
fisher_factor.get_cov()
for fisher_factor in self.layer_collection.get_factors()
]
sess.run([
cov_matrix.assign(2 * linalg_ops.eye(int(cov_matrix.shape[0])))
for cov_matrix in cov_matrices
])
for i in range(len(inv_matrices)):
# Compare new and old inverse values
new_inv_values = sess.run(inv_matrices)
is_inv_equal = [
np.allclose(initial_inv_value, new_inv_value)
for (initial_inv_value,
new_inv_value) in zip(initial_inv_values, new_inv_values)
]
num_inv_equal = sum(is_inv_equal)
# Ensure exactly one inverse matrix changes per step.
self.assertEqual(num_inv_equal, len(inv_matrices) - i)
# Run all inverse update ops.
sess.run(inv_update_op)
sess.run(increment_global_step)
开发者ID:QiangCai,项目名称:tensorflow,代码行数:60,代码来源:estimator_test.py
示例20: testUsageGraph
def testUsageGraph(self):
"""Expected usage when graph building."""
with context.graph_mode():
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with ops.Graph().as_default():
model = MyModel()
optimizer = adam.AdamOptimizer(0.001)
root = util.Checkpoint(
optimizer=optimizer, model=model,
global_step=training_util.get_or_create_global_step())
input_value = constant_op.constant([[3.]])
train_op = optimizer.minimize(
model(input_value),
global_step=root.global_step)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
with self.session(graph=ops.get_default_graph()) as session:
status = root.restore(save_path=checkpoint_path)
status.initialize_or_restore(session=session)
if checkpoint_path is None:
self.assertEqual(0, training_continuation)
with self.assertRaises(AssertionError):
status.assert_consumed()
else:
status.assert_consumed()
for _ in range(num_training_steps):
session.run(train_op)
root.save(file_prefix=checkpoint_prefix, session=session)
self.assertEqual((training_continuation + 1) * num_training_steps,
session.run(root.global_step))
self.assertEqual(training_continuation + 1,
session.run(root.save_counter))
开发者ID:jackd,项目名称:tensorflow,代码行数:35,代码来源:checkpointable_utils_test.py
注:本文中的tensorflow.python.training.training_util.get_or_create_global_step函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论