• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python training_util.create_global_step函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.training.training_util.create_global_step函数的典型用法代码示例。如果您正苦于以下问题:Python create_global_step函数的具体用法?Python create_global_step怎么用?Python create_global_step使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了create_global_step函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _test_logits

 def _test_logits(self, mode, rnn_units, logits_dimension, features_fn,
                  sequence_feature_columns, context_feature_columns,
                  expected_logits):
   """Tests that the expected logits are calculated."""
   with ops.Graph().as_default():
     # Global step needed for MonitoredSession, which is in turn used to
     # explicitly set variable weights through a checkpoint.
     training_util.create_global_step()
     # Use a variable scope here with 'rnn', emulating the rnn model_fn, so
     # the checkpoint naming is shared.
     with variable_scope.variable_scope('rnn'):
       input_layer_partitioner = (
           partitioned_variables.min_max_variable_partitioner(
               max_partitions=0, min_slice_size=64 << 20))
       logit_fn = rnn._rnn_logit_fn_builder(
           output_units=logits_dimension,
           rnn_cell_fn=rnn._make_rnn_cell_fn(rnn_units),
           sequence_feature_columns=sequence_feature_columns,
           context_feature_columns=context_feature_columns,
           input_layer_partitioner=input_layer_partitioner)
       # Features are constructed within this function, otherwise the Tensors
       # containing the features would be defined outside this graph.
       logits = logit_fn(features=features_fn(), mode=mode)
       with monitored_session.MonitoredTrainingSession(
           checkpoint_dir=self._model_dir) as sess:
         self.assertAllClose(expected_logits, sess.run(logits), atol=1e-4)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:26,代码来源:rnn_test.py


示例2: _save_first_checkpoint

def _save_first_checkpoint(keras_model, estimator, custom_objects,
                           keras_weights):
  """Save first checkpoint for the keras Estimator.

  Args:
    keras_model: an instance of compiled keras model.
    estimator: keras estimator.
    custom_objects: Dictionary for custom objects.
    keras_weights: A flat list of Numpy arrays for weights of given keras_model.

  Returns:
    The model_fn for a keras Estimator.
  """
  # Load weights and save to checkpoint if there is no checkpoint
  latest_path = saver_lib.latest_checkpoint(estimator.model_dir)
  if not latest_path:
    with ops.Graph().as_default():
      random_seed.set_random_seed(estimator.config.tf_random_seed)
      training_util.create_global_step()
      model = _clone_and_build_model(model_fn_lib.ModeKeys.TRAIN, keras_model,
                                     custom_objects)
      # save to checkpoint
      with session.Session(config=estimator._session_config) as sess:
        if keras_weights:
          model.set_weights(keras_weights)
        # Make update ops and initialize all variables.
        if not model.train_function:
          # pylint: disable=protected-access
          model._make_train_function()
          K._initialize_variables(sess)
          # pylint: enable=protected-access
        saver = saver_lib.Saver()
        saver.save(sess, os.path.join(estimator.model_dir, 'keras_model.ckpt'))
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:33,代码来源:keras.py


示例3: _test_logits

 def _test_logits(
     self, mode, hidden_units, logits_dimension, inputs, expected_logits):
   """Tests that the expected logits are passed to mock head."""
   with ops.Graph().as_default():
     training_util.create_global_step()
     head = _mock_head(
         self,
         hidden_units=hidden_units,
         logits_dimension=logits_dimension,
         expected_logits=expected_logits)
     estimator_spec = dnn._dnn_model_fn(
         features={'age': constant_op.constant(inputs)},
         labels=constant_op.constant([[1]]),
         mode=mode,
         head=head,
         hidden_units=hidden_units,
         feature_columns=[
             feature_column.numeric_column('age',
                                           shape=np.array(inputs).shape[1:])],
         optimizer=_mock_optimizer(self, hidden_units))
     with monitored_session.MonitoredTrainingSession(
         checkpoint_dir=self._model_dir) as sess:
       if mode == model_fn.ModeKeys.TRAIN:
         sess.run(estimator_spec.train_op)
       elif mode == model_fn.ModeKeys.EVAL:
         sess.run(estimator_spec.loss)
       elif mode == model_fn.ModeKeys.PREDICT:
         sess.run(estimator_spec.predictions)
       else:
         self.fail('Invalid mode: {}'.format(mode))
开发者ID:cameronphchen,项目名称:tensorflow,代码行数:30,代码来源:dnn_test.py


示例4: test_features_tensor_raises_value_error

  def test_features_tensor_raises_value_error(self):
    """Tests that passing a Tensor for features raises a ValueError."""
    hidden_units = (2, 2)
    logits_dimension = 3
    inputs = ([[10.]], [[8.]])
    expected_logits = [[0, 0, 0]]

    with ops.Graph().as_default():
      training_util.create_global_step()
      head = mock_head(
          self,
          hidden_units=hidden_units,
          logits_dimension=logits_dimension,
          expected_logits=expected_logits)
      with self.assertRaisesRegexp(ValueError, 'features should be a dict'):
        self._dnn_model_fn(
            features=constant_op.constant(inputs),
            labels=constant_op.constant([[1]]),
            mode=model_fn.ModeKeys.TRAIN,
            head=head,
            hidden_units=hidden_units,
            feature_columns=[
                feature_column.numeric_column(
                    'age', shape=np.array(inputs).shape[1:])
            ],
            optimizer=mock_optimizer(self, hidden_units))
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:26,代码来源:dnn_testing_utils.py


示例5: run_session

 def run_session(self, hooks, should_stop):
   hooks = hooks if isinstance(hooks, list) else [hooks]
   with ops.Graph().as_default():
     training_util.create_global_step()
     no_op = control_flow_ops.no_op()
     with monitored_session.SingularMonitoredSession(hooks=hooks) as mon_sess:
       mon_sess.run(no_op)
       self.assertEqual(mon_sess.should_stop(), should_stop)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:8,代码来源:early_stopping_test.py


示例6: test_create_global_step

 def test_create_global_step(self):
   self.assertIsNone(training_util.get_global_step())
   with ops.Graph().as_default() as g:
     global_step = training_util.create_global_step()
     self._assert_global_step(global_step)
     self.assertRaisesRegexp(ValueError, 'already exists',
                             training_util.create_global_step)
     self.assertRaisesRegexp(ValueError, 'already exists',
                             training_util.create_global_step, g)
     self._assert_global_step(training_util.create_global_step(ops.Graph()))
开发者ID:aeverall,项目名称:tensorflow,代码行数:10,代码来源:training_util_test.py


示例7: test_multi_feature_column_multi_dim_logits

  def test_multi_feature_column_multi_dim_logits(self):
    """Tests multiple feature columns and multi-dimensional logits.

    All numbers are the same as test_multi_dim_input_multi_dim_logits. The only
    difference is that the input consists of two 1D feature columns, instead of
    one 2D feature column.
    """
    base_global_step = 100
    create_checkpoint((([[.6, .5], [-.6, -.5]],
                        [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]),
                       ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),),
                      base_global_step, self._model_dir)
    hidden_units = (2, 2)
    logits_dimension = 3
    inputs = ([[10.]], [[8.]])
    expected_logits = [[-0.48, 0.48, 0.39]]

    for mode in [
        model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL,
        model_fn.ModeKeys.PREDICT
    ]:
      with ops.Graph().as_default():
        training_util.create_global_step()
        head = mock_head(
            self,
            hidden_units=hidden_units,
            logits_dimension=logits_dimension,
            expected_logits=expected_logits)
        estimator_spec = self._dnn_model_fn(
            features={
                'age': constant_op.constant(inputs[0]),
                'height': constant_op.constant(inputs[1])
            },
            labels=constant_op.constant([[1]]),
            mode=mode,
            head=head,
            hidden_units=hidden_units,
            feature_columns=[
                feature_column.numeric_column('age'),
                feature_column.numeric_column('height')
            ],
            optimizer=mock_optimizer(self, hidden_units))
        with monitored_session.MonitoredTrainingSession(
            checkpoint_dir=self._model_dir) as sess:
          if mode == model_fn.ModeKeys.TRAIN:
            sess.run(estimator_spec.train_op)
          elif mode == model_fn.ModeKeys.EVAL:
            sess.run(estimator_spec.loss)
          elif mode == model_fn.ModeKeys.PREDICT:
            sess.run(estimator_spec.predictions)
          else:
            self.fail('Invalid mode: {}'.format(mode))
开发者ID:ajaybhat,项目名称:tensorflow,代码行数:52,代码来源:dnn_testing_utils.py


示例8: test_reads_before_increments

 def test_reads_before_increments(self):
   with ops.Graph().as_default():
     training_util.create_global_step()
     read_tensor = training_util._get_or_create_global_step_read()
     inc_op = training_util._increment_global_step(1)
     inc_three_op = training_util._increment_global_step(3)
     with monitored_session.MonitoredTrainingSession() as sess:
       read_value, _ = sess.run([read_tensor, inc_op])
       self.assertEqual(0, read_value)
       read_value, _ = sess.run([read_tensor, inc_three_op])
       self.assertEqual(1, read_value)
       read_value = sess.run(read_tensor)
       self.assertEqual(4, read_value)
开发者ID:aeverall,项目名称:tensorflow,代码行数:13,代码来源:training_util_test.py


示例9: create_checkpoint

def create_checkpoint(rnn_weights, rnn_biases, logits_weights, logits_biases,
                      global_step, model_dir):
  """Create checkpoint file with provided model weights.

  Args:
    rnn_weights: Iterable of values of weights for the RNN cell.
    rnn_biases: Iterable of values of biases for the RNN cell.
    logits_weights: Iterable of values for matrix connecting RNN output to
      logits.
    logits_biases: Iterable of values for logits bias term.
    global_step: Initial global step to save in checkpoint.
    model_dir: Directory into which checkpoint is saved.
  """
  model_weights = {}
  model_weights[CELL_WEIGHTS_NAME] = rnn_weights
  model_weights[CELL_BIAS_NAME] = rnn_biases
  model_weights[LOGITS_WEIGHTS_NAME] = logits_weights
  model_weights[LOGITS_BIAS_NAME] = logits_biases

  with ops.Graph().as_default():
    # Create model variables.
    for k, v in six.iteritems(model_weights):
      variables_lib.Variable(v, name=k, dtype=dtypes.float32)

    # Create non-model variables.
    global_step_var = training_util.create_global_step()
    assign_op = global_step_var.assign(global_step)

    # Initialize vars and save checkpoint.
    with monitored_session.MonitoredTrainingSession(
        checkpoint_dir=model_dir) as sess:
      sess.run(assign_op)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:32,代码来源:rnn_test.py


示例10: _create_checkpoint

def _create_checkpoint(weights_and_biases, global_step, model_dir):
  """Create checkpoint file with provided model weights.

  Args:
    weights_and_biases: Iterable of tuples of weight and bias values.
    global_step: Initial global step to save in checkpoint.
    model_dir: Directory into which checkpoint is saved.
  """
  weights, biases = zip(*weights_and_biases)
  model_weights = {}

  # Hidden layer weights.
  for i in range(0, len(weights) - 1):
    model_weights[_HIDDEN_WEIGHTS_NAME_PATTERN % i] = weights[i]
    model_weights[_HIDDEN_BIASES_NAME_PATTERN % i] = biases[i]

  # Output layer weights.
  model_weights[_LOGITS_WEIGHTS_NAME] = weights[-1]
  model_weights[_LOGITS_BIASES_NAME] = biases[-1]

  with ops.Graph().as_default():
    # Create model variables.
    for k, v in six.iteritems(model_weights):
      variables_lib.Variable(v, name=k, dtype=dtypes.float32)

    # Create non-model variables.
    global_step_var = training_util.create_global_step()

    # Initialize vars and save checkpoint.
    with tf_session.Session() as sess:
      variables_lib.global_variables_initializer().run()
      global_step_var.assign(global_step).eval()
      saver.Saver().save(sess, os.path.join(model_dir, 'model.ckpt'))
开发者ID:cameronphchen,项目名称:tensorflow,代码行数:33,代码来源:dnn_test.py


示例11: test_stop

  def test_stop(self):
    hook = early_stopping._StopOnPredicateHook(
        should_stop_fn=lambda: False, run_every_secs=0)
    with ops.Graph().as_default():
      training_util.create_global_step()
      no_op = control_flow_ops.no_op()
      with monitored_session.SingularMonitoredSession(hooks=[hook]) as mon_sess:
        mon_sess.run(no_op)
        self.assertFalse(mon_sess.should_stop())
        self.assertFalse(mon_sess.raw_session().run(hook._stop_var))

    hook = early_stopping._StopOnPredicateHook(
        should_stop_fn=lambda: True, run_every_secs=0)
    with ops.Graph().as_default():
      training_util.create_global_step()
      no_op = control_flow_ops.no_op()
      with monitored_session.SingularMonitoredSession(hooks=[hook]) as mon_sess:
        mon_sess.run(no_op)
        self.assertTrue(mon_sess.should_stop())
        self.assertTrue(mon_sess.raw_session().run(hook._stop_var))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:20,代码来源:early_stopping_test.py


示例12: global_step

  def global_step(self):
    if self._global_step is None:
      # Get the default create_global_step utility to actually call
      # self.add_variable, by setting a custom getter.
      def _owned_variable_as_custom_getter(getter, *args, **kwargs):
        return self.add_variable(*args, getter=getter, **kwargs)

      with variable_scope.variable_scope(
          "", custom_getter=_owned_variable_as_custom_getter):
        self._global_step = training_util.create_global_step()
    return self._global_step
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:11,代码来源:checkpointable_test.py


示例13: _gan_train_ops

 def _gan_train_ops(self, generator_add, discriminator_add):
   step = training_util.create_global_step()
   # Increment the global count every time a train op is run so we can count
   # the number of times they're run.
   # NOTE: `use_locking=True` is required to avoid race conditions with
   # joint training.
   train_ops = namedtuples.GANTrainOps(
       generator_train_op=step.assign_add(generator_add, use_locking=True),
       discriminator_train_op=step.assign_add(discriminator_add,
                                              use_locking=True),
       global_step_inc_op=step.assign_add(1))
   return train_ops
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:12,代码来源:train_test.py


示例14: testGlobalStepIsWrapped

 def testGlobalStepIsWrapped(self):
   distribution = parameter_server_strategy.ParameterServerStrategy(
       num_gpus_per_worker=2)
   with ops.Graph().as_default(), distribution.scope():
     created_step = training_util.create_global_step()
     get_step = training_util.get_global_step()
     self.assertEqual(created_step, get_step,
                      msg=('created_step %s type %s vs. get_step %s type %s' %
                           (id(created_step), created_step.__class__.__name__,
                            id(get_step), get_step.__class__.__name__)))
     self.assertIs(values.AggregatingVariable, type(created_step))
     self.assertIs(values.AggregatingVariable, type(get_step))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:12,代码来源:parameter_server_strategy_test.py


示例15: _save_first_checkpoint

def _save_first_checkpoint(keras_model, custom_objects, config):
  """Save first checkpoint for the keras Estimator.

  Args:
    keras_model: an instance of compiled keras model.
    custom_objects: Dictionary for custom objects.
    config: Estimator config.

  Returns:
    The path where keras model checkpoint is saved.
  """
  # save checkpoint into subdirectory to allow warm start
  keras_model_dir = os.path.join(config.model_dir, 'keras')
  # Load weights and save to checkpoint if there is no checkpoint
  latest_path = checkpoint_management.latest_checkpoint(keras_model_dir)
  if not latest_path:
    keras_weights = None
    if _any_weight_initialized(keras_model):
      keras_weights = keras_model.get_weights()
    if not gfile.IsDirectory(keras_model_dir):
      gfile.MakeDirs(keras_model_dir)
    with ops.Graph().as_default():
      random_seed.set_random_seed(config.tf_random_seed)
      training_util.create_global_step()
      model = _clone_and_build_model(model_fn_lib.ModeKeys.TRAIN, keras_model,
                                     custom_objects)
      # save to checkpoint
      with session.Session(config=config.session_config) as sess:
        if keras_weights:
          model.set_weights(keras_weights)
        # Make update ops and initialize all variables.
        if not model.train_function:
          # pylint: disable=protected-access
          model._make_train_function()
          K._initialize_variables(sess)
          # pylint: enable=protected-access
        saver = saver_lib.Saver()
        latest_path = os.path.join(keras_model_dir, 'keras_model.ckpt')
        saver.save(sess, latest_path)
  return latest_path
开发者ID:AnishShah,项目名称:tensorflow,代码行数:40,代码来源:keras.py


示例16: testGlobalStepIsWrappedOnTwoGPUs

 def testGlobalStepIsWrappedOnTwoGPUs(self, use_core_strategy):
   strategy, _, _ = create_test_objects(
       num_gpus=2, use_core_strategy=use_core_strategy)
   with ops.Graph().as_default(), strategy.scope():
     created_step = training_util.create_global_step()
     get_step = training_util.get_global_step()
     self.assertEqual(created_step, get_step,
                      msg=('created_step %s type %s vs. get_step %s type %s' %
                           (id(created_step), created_step.__class__.__name__,
                            id(get_step), get_step.__class__.__name__)))
     self.assertIs(values.AggregatingVariable, type(created_step))
     self.assertIs(values.AggregatingVariable, type(get_step))
     self.assertIs(strategy, created_step.distribute_strategy)
开发者ID:hdyen,项目名称:tensorflow,代码行数:13,代码来源:parameter_server_strategy_test.py


示例17: test_requests

  def test_requests(self):
    with ops.Graph().as_default(), session_lib.Session() as sess:
      training_util.create_global_step()
      mock_mon = FakeMonitor()
      mock_mon2 = FakeMonitor()

      hook = learn.monitors.RunHookAdapterForMonitors([mock_mon, mock_mon2])
      hook.begin()

      mon_sess = monitored_session._HookedSession(sess=sess, hooks=[hook])

      a_tensor = constant_op.constant([0], name='a_tensor')
      constant_op.constant([5], name='another_tensor')
      constant_op.constant([10], name='third_tensor')
      mock_mon.requested_tensors = ['another_tensor']
      mock_mon2.requested_tensors = ['third_tensor']
      sess.run(variables.global_variables_initializer())

      output = mon_sess.run(a_tensor)
      self.assertEqual(output, [0])
      self.assertEqual(mock_mon.output['another_tensor'], [5])
      self.assertEqual(mock_mon2.output['third_tensor'], [10])
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:22,代码来源:monitors_test.py


示例18: testGlobalStepIsNotWrappedOnOneGPU

 def testGlobalStepIsNotWrappedOnOneGPU(self, use_core_strategy):
   strategy, _, _ = create_test_objects(
       num_gpus=1, use_core_strategy=use_core_strategy)
   with ops.Graph().as_default(), strategy.scope():
     created_step = training_util.create_global_step()
     get_step = training_util.get_global_step()
     self.assertEqual(created_step, get_step,
                      msg=('created_step %s type %s vs. get_step %s type %s' %
                           (id(created_step), created_step.__class__.__name__,
                            id(get_step), get_step.__class__.__name__)))
     self.assertIs(resource_variable_ops.ResourceVariable, type(created_step))
     self.assertIs(resource_variable_ops.ResourceVariable, type(get_step))
     self.assertIs(strategy, created_step.distribute_strategy)
开发者ID:pyjennings,项目名称:tensorflow,代码行数:13,代码来源:parameter_server_strategy_test.py


示例19: create_global_step

def create_global_step(graph=None):
  """Create global step tensor in graph.

  Args:
    graph: The graph in which to create the global step tensor. If missing,
      use default graph.

  Returns:
    Global step tensor.

  Raises:
    ValueError: if global step tensor is already defined.
  """
  return training_util.create_global_step(graph)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:14,代码来源:variables.py


示例20: create_global_step

def create_global_step(graph=None):
  """Create global step tensor in graph.

  This API is deprecated. Use core framework training version instead.

  Args:
    graph: The graph in which to create the global step tensor. If missing,
      use default graph.

  Returns:
    Global step tensor.

  Raises:
    ValueError: if global step tensor is already defined.
  """
  return training_util.create_global_step(graph)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:16,代码来源:variables.py



注:本文中的tensorflow.python.training.training_util.create_global_step函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap