• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python summary.scalar函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.summary.scalar函数的典型用法代码示例。如果您正苦于以下问题:Python scalar函数的具体用法?Python scalar怎么用?Python scalar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了scalar函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _training_loss

def _training_loss(
    features, labels, logits, loss_fn, weight_column_name=None, head_name=None):
  """Returns training loss tensor.

  Training loss is different from the loss reported on the tensorboard as we
  should respect the example weights when computing the gradient.

    L = sum_{i} w_{i} * l_{i} / B

  where B is the number of examples in the batch, l_{i}, w_{i} are individual
  losses, and example weight.

  Args:
    features: Features `dict`.
    labels: Either a `Tensor` for labels or in multihead case, a `dict` of
      string to `Tensor`.
    logits: logits, a float `Tensor`. Shape is `(batch_size, logits_dimension)`.
    loss_fn: Function taking `logits` and `labels`, and returning the raw
      unweighted loss.
    weight_column_name: Key for weights `Tensor` in `features`, if applicable.
    head_name: Head name, used for summary.

  Returns:
    A loss `Output`.
  """
  with ops.name_scope(
      None, "training_loss",
      tuple(six.itervalues(features)) + (labels, logits)) as name:
    loss, weighted_average_loss = _loss(
        loss_fn(logits, labels),
        _weight_tensor(features, weight_column_name),
        name=name)
    summary.scalar(_head_prefixed(head_name, "loss"), weighted_average_loss)
    return loss
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:34,代码来源:head.py


示例2: gradient_clipping

  def gradient_clipping(grads_and_vars):
    """Internal function for adaptive clipping."""
    grads, variables = zip(*grads_and_vars)

    norm = clip_ops.global_norm(grads)

    max_norm, log_mean = _adaptive_max_norm(
        norm, std_factor, decay, global_step, epsilon, name)

    # reports the max gradient norm for debugging
    if report_summary:
      summary.scalar("global_norm/adaptive_max_gradient_norm", max_norm)

    # factor will be 1. if norm is smaller than max_norm
    factor = array_ops.where(norm < max_norm,
                             array_ops.ones_like(norm),
                             math_ops.exp(log_mean) / norm)

    if static_max_norm is not None:
      factor = math_ops.minimum(static_max_norm / norm, factor)

    # apply factor
    clipped_grads = []
    for grad in grads:
      if grad is None:
        clipped_grads.append(None)
      elif isinstance(grad, ops.IndexedSlices):
        clipped_grads.append(ops.IndexedSlices(
            grad.values * factor, grad.indices, grad.dense_shape))
      else:
        clipped_grads.append(grad * factor)

    return list(zip(clipped_grads, variables))
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:33,代码来源:optimizers.py


示例3: model_fn_with_summary

 def model_fn_with_summary(features, labels, mode, params):
   del features, labels, params
   loss = constant_op.constant(_EXPECTED_LOSS)
   summary.scalar('loss_scalar_summary', loss)
   summary.histogram('loss_histogram_summary', loss)
   summary.image('loss_image_summary', loss)
   return tpu_estimator.TPUEstimatorSpec(mode=mode, loss=loss)
开发者ID:AndreasGocht,项目名称:tensorflow,代码行数:7,代码来源:xla_test.py


示例4: _centered_bias

def _centered_bias(num_label_columns):
  centered_bias = variables.Variable(
      array_ops.zeros([num_label_columns]),
      collections=[_CENTERED_BIAS, ops.GraphKeys.VARIABLES],
      name=_CENTERED_BIAS_WEIGHT)
  summary.scalar(["centered_bias %d" % cb for cb in range(num_label_columns)],
                 array_ops.reshape(centered_bias, [-1]))
  return centered_bias
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:8,代码来源:dnn.py


示例5: _centered_bias

def _centered_bias(num_label_columns):
  centered_bias = variables.Variable(
      array_ops.zeros([num_label_columns]),
      collections=[_CENTERED_BIAS, ops.GraphKeys.GLOBAL_VARIABLES],
      name=_CENTERED_BIAS_WEIGHT)
  for i in range(num_label_columns):
    summary.scalar("centered_bias %d" % i, centered_bias[i])
  return centered_bias
开发者ID:jeffzheng1,项目名称:tensorflow,代码行数:8,代码来源:dnn.py


示例6: prefetch_queue

def prefetch_queue(tensors,
                   capacity=8,
                   num_threads=1,
                   shared_name=None,
                   name=None):
  """Creates a queue to prefetech tensors from `tensors`.

  A queue runner for enqueing tensors into the prefetch_queue is automatically
  added to the TF QueueRunners collection.

  Example:
  This is for example useful to pre-assemble input batches read with
  `tf.train.batch()` and enqueue the pre-assembled batches.  Ops that dequeue
  from the pre-assembled queue will not pay the cost of assembling the batch.

  images, labels = tf.train.batch([image, label], batch_size=32, num_threads=4)
  batch_queue = prefetch_queue([images, labels])
  images, labels = batch_queue.dequeue()
  logits = Net(images)
  loss = Loss(logits, labels)

  Args:
    tensors: A list or dictionary of `Tensors` to enqueue in the buffer.
    capacity: An integer. The maximum number of elements in the queue.
    num_threads: An integer.  Number of threads running the enqueue op.
    shared_name: (optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: (Optional) A name for the operations.

  Returns:
    A queue from which you can dequeue tensors with the same type and shape
    as `tensors`.
  """
  if isinstance(tensors, dict):
    # Need to wrap the keys and values in list() since Python3 returns views.
    # We sort the keys so the order is consistent across runs.
    names = list(sorted(tensors.keys()))
    tensor_list = list([tensors[n] for n in names])
  else:
    names = None
    tensor_list = tensors

  with ops.name_scope(name, "prefetch_queue", tensor_list) as name:
    dtypes = [t.dtype for t in tensor_list]
    shapes = [t.get_shape() for t in tensor_list]
    queue = data_flow_ops.FIFOQueue(capacity=capacity,
                                    dtypes=dtypes,
                                    shapes=shapes,
                                    names=names,
                                    shared_name=shared_name)
    enqueue_op = queue.enqueue(tensors)
    queue_runner.add_queue_runner(
        queue_runner.QueueRunner(queue, [enqueue_op] * num_threads))
    summary.scalar("fraction_of_%d_full" % capacity,
                   math_ops.to_float(queue.size()) * (1. / capacity))
    return queue
开发者ID:moolighty,项目名称:tensorflow,代码行数:56,代码来源:prefetch_queue.py


示例7: input_producer

def input_producer(input_tensor, element_shape=None, num_epochs=None,
                   shuffle=True, seed=None, capacity=32, shared_name=None,
                   summary_name=None, name=None):
  """Output the rows of `input_tensor` to a queue for an input pipeline.

  Args:
    input_tensor: A tensor with the rows to produce. Must be at least
      one-dimensional. Must either have a fully-defined shape, or
      `element_shape` must be defined.
    element_shape: (Optional.) A `TensorShape` representing the shape of a
      row of `input_tensor`, if it cannot be inferred.
    num_epochs: (Optional.) An integer. If specified `input_producer` produces
      each row of `input_tensor` `num_epochs` times before generating an
      `OutOfRange` error. If not specified, `input_producer` can cycle through
      the rows of `input_tensor` an unlimited number of times.
    shuffle: (Optional.) A boolean. If true, the rows are randomly shuffled
      within each epoch.
    seed: (Optional.) An integer. The seed to use if `shuffle` is true.
    capacity: (Optional.) The capacity of the queue to be used for buffering
      the input.
    shared_name: (Optional.) If set, this queue will be shared under the given
      name across multiple sessions.
    summary_name: (Optional.) If set, a scalar summary for the current queue
      size will be generated, using this name as part of the tag.
    name: (Optional.) A name for queue.

  Returns:
    A queue with the output rows.  A `QueueRunner` for the queue is
    added to the current `QUEUE_RUNNER` collection of the current
    graph.

  Raises:
    ValueError: If the shape of the input cannot be inferred from the arguments.
  """
  with ops.name_scope(name, "input_producer", [input_tensor]):
    input_tensor = ops.convert_to_tensor(input_tensor, name="input_tensor")
    element_shape = input_tensor.get_shape()[1:].merge_with(element_shape)
    if not element_shape.is_fully_defined():
      raise ValueError("Either `input_tensor` must have a fully defined shape "
                       "or `element_shape` must be specified")

    if shuffle:
      input_tensor = random_ops.random_shuffle(input_tensor, seed=seed)

    input_tensor = limit_epochs(input_tensor, num_epochs)

    q = data_flow_ops.FIFOQueue(capacity=capacity,
                                dtypes=[input_tensor.dtype.base_dtype],
                                shapes=[element_shape],
                                shared_name=shared_name, name=name)
    enq = q.enqueue_many([input_tensor])
    queue_runner.add_queue_runner(queue_runner.QueueRunner(q, [enq]))
    if summary_name is not None:
      summary.scalar("queue/%s/%s" % (q.name, summary_name),
                     math_ops.cast(q.size(), dtypes.float32) * (1. / capacity))
    return q
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:56,代码来源:input.py


示例8: _centered_bias

def _centered_bias(logits_dimension, weight_collection):
  """Creates and returns centered bias."""
  centered_bias = variables.Variable(
      array_ops.zeros([logits_dimension]),
      collections=[weight_collection, ops.GraphKeys.GLOBAL_VARIABLES],
      name="centered_bias_weight")

  biases = array_ops.reshape(centered_bias, [-1])
  for cb in range(logits_dimension):
    summary.scalar("centered_bias_%d" % cb, biases[cb])
  return centered_bias
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:11,代码来源:head.py


示例9: _conditional_batch

def _conditional_batch(tensors, keep_input, batch_size, num_threads=10):
  """Conditionally enqueue tensors based on accept_prob.

  Specifically, enqueue the element if accept_prob > rand_unif([0, 1]).

  Args:
      tensors: List of tensors to enqueue.
      keep_input: Bool. Whether to enqueue or not.
      batch_size: Size of batch.
      num_threads: Number of enqueueing threads.

  Returns:
      List of batched tensors.

  Raises:
      ValueError: `accept_prob` isn't 0D.
  """
  keep_input.get_shape().assert_has_rank(0)
  # Determine shapes and types of to-be-enqueued-tensors.
  shapes_list = []
  dtypes_list = []
  for tensor in tensors:
    cur_shape = tensor.get_shape()
    cur_shape.assert_is_fully_defined()
    shapes_list.append(cur_shape)
    dtypes_list.append(tensor.dtype)

  final_q = data_flow_ops.FIFOQueue(capacity=batch_size,
                                    shapes=shapes_list,
                                    dtypes=dtypes_list,
                                    name='batched_queue')
  summary.scalar('queue/%s/size' % final_q.name, final_q.size())

  # Conditionally enqueue.
  # Reshape enqueue op to match no_op's shape.
  conditional_enqueue = control_flow_ops.cond(
      keep_input,
      lambda: final_q.enqueue(tensors),
      control_flow_ops.no_op)
  queue_runner.add_queue_runner(queue_runner.QueueRunner(
      final_q, [conditional_enqueue] * num_threads))

  out_tensor = final_q.dequeue_many(batch_size)
  # Queues return a single tensor if the list of enqued tensors is one. Since we
  # want the type to be the same in all cases, always return a list.
  if isinstance(out_tensor, ops.Tensor):
    out_tensor = [out_tensor]

  return out_tensor
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:49,代码来源:sampling_ops.py


示例10: test_report_unsupported_operations

  def test_report_unsupported_operations(self):
    """Tests that unsupported operations are detected."""
    context = self.create_test_xla_compile_context()
    context.Enter()
    dummy_tensor = constant_op.constant(1.1)
    audio_summary = summary.audio('audio_summary', dummy_tensor, 0.5)
    histogram_summary = summary.histogram('histogram_summary', dummy_tensor)
    image_summary = summary.image('image_summary', dummy_tensor)
    scalar_summary = summary.scalar('scalar_summary', dummy_tensor)
    tensor_summary = summary.tensor_summary('tensor_summary', dummy_tensor)
    summary.merge(
        [
            audio_summary, histogram_summary, image_summary, scalar_summary,
            tensor_summary
        ],
        name='merge_summary')
    logging_ops.Print(dummy_tensor, [dummy_tensor], name='print_op')
    context.Exit()

    unsupported_ops_names = [op.name for op in context._unsupported_ops]
    self.assertEqual(unsupported_ops_names, [
        u'audio_summary', u'histogram_summary', u'image_summary',
        u'scalar_summary', u'tensor_summary', u'merge_summary/merge_summary',
        u'print_op'
    ])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:25,代码来源:xla_test.py


示例11: __init__

  def __init__(self,
               examples,
               variables,
               options):
    """Create a new sdca optimizer."""

    if not examples or not variables or not options:
      raise ValueError('examples, variables and options must all be specified.')

    supported_losses = ('logistic_loss', 'squared_loss', 'hinge_loss',
                        'smooth_hinge_loss')
    if options['loss_type'] not in supported_losses:
      raise ValueError('Unsupported loss_type: ', options['loss_type'])

    self._assertSpecified(['example_labels', 'example_weights', 'example_ids',
                           'sparse_features', 'dense_features'], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)

    self._assertSpecified(['sparse_features_weights', 'dense_features_weights'],
                          variables)
    self._assertList(['sparse_features_weights', 'dense_features_weights'],
                     variables)

    self._assertSpecified(['loss_type', 'symmetric_l2_regularization',
                           'symmetric_l1_regularization'], options)

    for name in ['symmetric_l1_regularization', 'symmetric_l2_regularization']:
      value = options[name]
      if value < 0.0:
        raise ValueError('%s should be non-negative. Found (%f)' %
                         (name, value))

    self._examples = examples
    self._variables = variables
    self._options = options
    self._create_slots()
    self._hashtable = ShardedMutableDenseHashTable(
        key_dtype=dtypes.int64,
        value_dtype=dtypes.float32,
        num_shards=self._num_table_shards(),
        default_value=[0.0, 0.0, 0.0, 0.0],
        # SdcaFprint never returns 0 or 1 for the low64 bits, so this a safe
        # empty_key (that will never collide with actual payloads).
        empty_key=[0, 0])

    summary.scalar('approximate_duality_gap', self.approximate_duality_gap())
    summary.scalar('examples_seen', self._hashtable.size())
开发者ID:moolighty,项目名称:tensorflow,代码行数:47,代码来源:sdca_ops.py


示例12: _training_loss

  def _training_loss(self, features, labels, logits=None,
                     logits_input=None, name="training_loss"):
    """Returns training loss tensor for this head.

    Training loss is different from the loss reported on the tensorboard as we
    should respect the example weights when computing the gradient.

      L = sum_{i} w_{i} * l_{i} / B

    where B is the number of examples in the batch, l_{i}, w_{i} are individual
    losses, and example weight.

    Args:
      features: features dict.
      labels: either a tensor for labels or in multihead case, a dict of string
        to labels tensor.
      logits: logits, a float tensor.
      logits_input: Output of last hidden layer.
      name: Op name.

    Returns:
      A tuple of training Loss and additional_train_op (possibly None)
    """
    labels = _check_labels(labels, self._label_name)

    centered_bias_step = None
    if self._enable_centered_bias:
      logits = nn.bias_add(logits, _centered_bias(
          self.logits_dimension,
          self._centered_bias_weight_collection))
      centered_bias_step = [_centered_bias_step(
          self.logits_dimension,
          self._centered_bias_weight_collection,
          labels,
          self._train_loss_fn)]

    loss_unweighted = self._train_loss_fn(logits, labels)
    loss, weighted_average_loss = _loss(
        loss_unweighted,
        _weight_tensor(features, self._weight_column_name),
        name=name)
    summary.scalar(
        _head_prefixed(self._head_name, "loss"), weighted_average_loss)
    return loss, centered_bias_step
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:44,代码来源:head.py


示例13: _centered_bias

def _centered_bias(logits_dimension):
  """Returns `logits`, optionally with centered bias applied.

  Args:
    logits_dimension: Last dimension of `logits`. Must be >= 1.

  Returns:
    Centered bias `Variable`.

  Raises:
    ValueError: if `logits_dimension` is invalid.
  """
  if (logits_dimension is None) or (logits_dimension < 1):
    raise ValueError("Invalid logits_dimension %s." % logits_dimension)
  centered_bias = variable_scope.get_variable(
      name="centered_bias_weight",
      shape=(logits_dimension,),
      initializer=init_ops.zeros_initializer,
      trainable=True)
  for dim in range(logits_dimension):
    summary.scalar("centered_bias_%d" % dim, centered_bias[dim])
  return centered_bias
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:22,代码来源:head.py


示例14: _add_scalar_summary

def _add_scalar_summary(tensor, tag=None):
    """Add a scalar summary operation for the tensor.

  Args:
    tensor: The tensor to summarize.
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The created histogram summary.

  Raises:
    ValueError: If the tag is already in use or the rank is not 0.
  """
    tensor.get_shape().assert_has_rank(0)
    tag = tag or "%s_summary" % tensor.op.name
    return summary.scalar(tag, tensor)
开发者ID:botonchou,项目名称:tensorflow,代码行数:16,代码来源:summaries.py


示例15: batch_join

def batch_join(tensors_list, batch_size, capacity=32, enqueue_many=False,
               shapes=None, dynamic_pad=False, allow_smaller_final_batch=False,
               shared_name=None, name=None):
  """Runs a list of tensors to fill a queue to create batches of examples.

  The `tensors_list` argument is a list of tuples of tensors, or a list of
  dictionaries of tensors.  Each element in the list is treated similarly
  to the `tensors` argument of `tf.train.batch()`.

  Enqueues a different list of tensors in different threads.
  Implemented using a queue -- a `QueueRunner` for the queue
  is added to the current `Graph`'s `QUEUE_RUNNER` collection.

  `len(tensors_list)` threads will be started,
  with thread `i` enqueuing the tensors from
  `tensors_list[i]`. `tensors_list[i1][j]` must match
  `tensors_list[i2][j]` in type and shape, except in the first
  dimension if `enqueue_many` is true.

  If `enqueue_many` is `False`, each `tensors_list[i]` is assumed
  to represent a single example. An input tensor `x` will be output as a
  tensor with shape `[batch_size] + x.shape`.

  If `enqueue_many` is `True`, `tensors_list[i]` is assumed to
  represent a batch of examples, where the first dimension is indexed
  by example, and all members of `tensors_list[i]` should have the
  same size in the first dimension.  The slices of any input tensor
  `x` are treated as examples, and the output tensors will have shape
  `[batch_size] + x.shape[1:]`.

  The `capacity` argument controls the how long the prefetching is allowed to
  grow the queues.

  The returned operation is a dequeue operation and will throw
  `tf.errors.OutOfRangeError` if the input queue is exhausted. If this
  operation is feeding another input queue, its queue runner will catch
  this exception, however, if this operation is used in your main thread
  you are responsible for catching this yourself.

  *N.B.:* If `dynamic_pad` is `False`, you must ensure that either
  (i) the `shapes` argument is passed, or (ii) all of the tensors in
  `tensors_list` must have fully-defined shapes. `ValueError` will be
  raised if neither of these conditions holds.

  If `dynamic_pad` is `True`, it is sufficient that the *rank* of the
  tensors is known, but individual dimensions may have value `None`.
  In this case, for each enqueue the dimensions with value `None`
  may have a variable length; upon dequeue, the output tensors will be padded
  on the right to the maximum shape of the tensors in the current minibatch.
  For numbers, this padding takes value 0.  For strings, this padding is
  the empty string.  See `PaddingFIFOQueue` for more info.

  If `allow_smaller_final_batch` is `True`, a smaller batch value than
  `batch_size` is returned when the queue is closed and there are not enough
  elements to fill the batch, otherwise the pending elements are discarded.
  In addition, all output tensors' static shapes, as accessed via the
  `get_shape` method will have a first `Dimension` value of `None`, and
  operations that depend on fixed batch_size would fail.

  Args:
    tensors_list: A list of tuples or dictionaries of tensors to enqueue.
    batch_size: An integer. The new batch size pulled from the queue.
    capacity: An integer. The maximum number of elements in the queue.
    enqueue_many: Whether each tensor in `tensor_list_list` is a single
      example.
    shapes: (Optional) The shapes for each example.  Defaults to the
      inferred shapes for `tensor_list_list[i]`.
    dynamic_pad: Boolean.  Allow variable dimensions in input shapes.
      The given dimensions are padded upon dequeue so that tensors within a
      batch have the same shapes.
    allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final
      batch to be smaller if there are insufficient items left in the queue.
    shared_name: (Optional) If set, this queue will be shared under the given
      name across multiple sessions.
    name: (Optional) A name for the operations.

  Returns:
    A list or dictionary of tensors with the same number and types as
    `tensors_list[i]`.

  Raises:
    ValueError: If the `shapes` are not specified, and cannot be
      inferred from the elements of `tensor_list_list`.
  """
  tensor_list_list = _as_tensor_list_list(tensors_list)
  with ops.name_scope(name, "batch_join", _flatten(tensor_list_list)) as name:
    tensor_list_list = _validate_join(tensor_list_list)
    tensor_list_list, sparse_info = _store_sparse_tensors_join(
        tensor_list_list, enqueue_many)
    types = _dtypes(tensor_list_list)
    shapes = _shapes(tensor_list_list, shapes, enqueue_many)
    # TODO(josh11b,mrry): Switch to BatchQueue once it is written.
    queue = _which_queue(dynamic_pad)(
        capacity=capacity, dtypes=types, shapes=shapes, shared_name=shared_name)
    _enqueue_join(queue, tensor_list_list, enqueue_many)
    summary.scalar("queue/%s/fraction_of_%d_full" % (queue.name, capacity),
                   math_ops.cast(queue.size(), dtypes.float32) *
                   (1. / capacity))

    if allow_smaller_final_batch:
#.........这里部分代码省略.........
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:101,代码来源:input.py


示例16: queue_parsed_features

def queue_parsed_features(parsed_features,
                          keys=None,
                          feature_queue_capacity=100,
                          num_queue_runners=None,
                          num_enqueue_threads=None,
                          name=None):
  """Speeds up parsing by using queues to do it asynchronously.

  This function adds the tensors in `parsed_features` to a queue, which allows
  the parsing (or any other expensive op before this) to be asynchronous wrt the
  rest of the training graph. This greatly improves read latency and speeds up
  training since the data will already be parsed and ready when each step of
  training needs it.

  All queue runners are added to the queue runners collection, and may be
  started via `start_queue_runners`.

  All ops are added to the default graph.

  Args:
    parsed_features: A dict of string key to `Tensor` or `SparseTensor` objects.
    keys: `Tensor` of string keys.
    feature_queue_capacity: Capacity of the parsed features queue.
    num_queue_runners: Deprecated. Defaults to 2 if this and
      `num_enqueue_threads` are both `None`. This is the number of queue
      runners to start for the feature queue. Adding multiple queue runners for
      the parsed example queue helps maintain a full queue when the subsequent
      computations overall are cheaper than parsing. This argument will be
      deprecated and replaced with `num_enqueue_threads`.
    num_enqueue_threads: Number of threads to enqueue the parsed example queue.
      Using multiple threads to enqueue the parsed example queue helps maintain
      a full queue when the subsequent computations overall are cheaper than
      parsing. This argument will replace `num_queue_runners`. This and
      `num_queue_runners` can not both be set.
    name: Name of resulting op.

  Returns:
    Returns tuple of:
    - `Tensor` corresponding to `keys` if provided, otherwise `None`.
    -  A dict of string key to `Tensor` or `SparseTensor` objects corresponding
       to `parsed_features`.
  Raises:
    ValueError: for invalid inputs.
  """
  num_queue_runners, num_enqueue_threads = _check_enqueue_params(
      num_queue_runners, num_enqueue_threads)

  args = list(parsed_features.values())
  if keys is not None:
    args += [keys]

  with ops.name_scope(name, 'queue_parsed_features', args):
    # Lets also add preprocessed tensors into the queue types for each item of
    # the queue.
    tensors_to_enqueue = []
    # Each entry contains the key, and a boolean which indicates whether the
    # tensor was a sparse tensor.
    tensors_mapping = []
    # TODO(sibyl-Aix6ihai): Most of the functionality here is about pushing sparse
    # tensors into a queue. This could be taken care in somewhere else so others
    # can reuse it. Also, QueueBase maybe extended to handle sparse tensors
    # directly.
    for key in sorted(parsed_features.keys()):
      tensor = parsed_features[key]
      if isinstance(tensor, sparse_tensor.SparseTensor):
        tensors_mapping.append((key, True))
        tensors_to_enqueue.extend([tensor.indices, tensor.values, tensor.shape])
      else:
        tensors_mapping.append((key, False))
        tensors_to_enqueue.append(tensor)

    if keys is not None:
      tensors_to_enqueue.append(keys)

    queue_dtypes = [x.dtype for x in tensors_to_enqueue]
    input_queue = data_flow_ops.FIFOQueue(feature_queue_capacity, queue_dtypes)

    # Add a summary op to debug if our feature queue is full or not.
    summary.scalar('queue/parsed_features/%s/fraction_of_%d_full' %
                   (input_queue.name, feature_queue_capacity),
                   math_ops.cast(input_queue.size(), dtypes.float32) *
                   (1. / feature_queue_capacity))

    # Add multiple queue runners so that the queue is always full. Adding more
    # than two queue-runners may hog the cpu on the worker to fill up the queue.
    #
    # Note: this can result in large last batch being lost as the multiple queue
    # runner threads do not coordinate with each other. Please use
    # `num_enqueue_threads` instead.
    if num_queue_runners is not None:
      for _ in range(num_queue_runners):
        queue_runner.add_queue_runner(
            queue_runner.QueueRunner(
                input_queue, [input_queue.enqueue(tensors_to_enqueue)],
                queue_closed_exception_types=(errors.OutOfRangeError,
                                              errors.CancelledError)))
    # Use a single QueueRunner with multiple threads to enqueue so the queue is
    # always full. The threads are coordinated so the last batch will not be
    # lost.
    elif num_enqueue_threads is not None:
#.........这里部分代码省略.........
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:101,代码来源:graph_io.py


示例17: enqueue_data


#.........这里部分代码省略.........
    seed: used to seed shuffling and reader starting points.
    name: a scope name identifying the data.
    enqueue_size: the number of rows to enqueue per step.
    num_epochs: limit enqueuing to a specified number of epochs, if provided.

  Returns:
    A queue filled with the rows of the given array or `DataFrame`.

  Raises:
    TypeError: `data` is not a Pandas `DataFrame` or a numpy `ndarray`.
  """
  with ops.name_scope(name):
    if isinstance(data, np.ndarray):
      types = [dtypes.int64, dtypes.as_dtype(data.dtype)]
      queue_shapes = [(), data.shape[1:]]
      get_feed_fn = _ArrayFeedFn
    elif isinstance(data, collections.OrderedDict):
      types = [dtypes.int64] + [dtypes.as_dtype(col.dtype)
                                for col in data.values()]
      queue_shapes = [()] + [col.shape[1:] for col in data.values()]
      get_feed_fn = _OrderedDictNumpyFeedFn
    elif HAS_PANDAS and isinstance(data, pd.DataFrame):
      types = [dtypes.as_dtype(dt)
               for dt in [data.index.dtype] + list(data.dtypes)]
      queue_shapes = [() for _ in types]
      get_feed_fn = _PandasFeedFn
    else:
      raise TypeError(
          "data must be either a numpy array or pandas DataFrame if pandas is "
          "installed; got {}".format(type(data).__name__))

    # TODO(jamieas): TensorBoard warnings for all warnings below once available.

    if num_threads > 1 and num_epochs is not None:
      logging.warning(
          "enqueue_data was called with num_epochs and num_threads > 1. "
          "num_epochs is applied per thread, so this will produce more "
          "epochs than you probably intend. "
          "If you want to limit epochs, use one thread.")

    if shuffle and num_threads > 1 and num_epochs is not None:
      logging.warning(
          "enqueue_data was called with shuffle=True, num_threads > 1, and "
          "num_epochs. This will create multiple threads, all reading the "
          "array/dataframe in order adding to the same shuffling queue; the "
          "results will likely not be sufficiently shuffled.")

    if not shuffle and num_threads > 1:
      logging.warning(
          "enqueue_data was called with shuffle=False and num_threads > 1. "
          "This will create multiple threads, all reading the "
          "array/dataframe in order. If you want examples read in order, use"
          " one thread; if you want multiple threads, enable shuffling.")

    if shuffle:
      min_after_dequeue = int(capacity / 4 if min_after_dequeue is None else
                              min_after_dequeue)
      queue = data_flow_ops.RandomShuffleQueue(capacity,
                                               min_after_dequeue,
                                               dtypes=types,
                                               shapes=queue_shapes,
                                               seed=seed)
    else:
      min_after_dequeue = 0  # just for the summary text
      queue = data_flow_ops.FIFOQueue(capacity,
                                      dtypes=types,
                                      shapes=queue_shapes)

    enqueue_ops = []
    feed_fns = []

    for i in range(num_threads):
      # Note the placeholders have no shapes, so they will accept any
      # enqueue_size.  enqueue_many below will break them up.
      placeholders = [array_ops.placeholder(t) for t in types]

      enqueue_ops.append(queue.enqueue_many(placeholders))
      seed_i = None if seed is None else (i + 1) * seed
      feed_fns.append(get_feed_fn(placeholders,
                                  data,
                                  enqueue_size,
                                  random_start=shuffle,
                                  seed=seed_i,
                                  num_epochs=num_epochs))

    runner = fqr.FeedingQueueRunner(queue=queue,
                                    enqueue_ops=enqueue_ops,
                                    feed_fns=feed_fns)
    queue_runner.add_queue_runner(runner)

    full = (math_ops.cast(
        math_ops.maximum(0, queue.size() - min_after_dequeue),
        dtypes.float32) * (1. / (capacity - min_after_dequeue)))
    # Note that name contains a '/' at the end so we intentionally do not place
    # a '/' after %s below.
    summary_name = ("queue/%sfraction_over_%d_of_%d_full" %
                    (queue.name, min_after_dequeue,
                     capacity - min_after_dequeue))
    summary.scalar(summary_name, full)
    return queue
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:101,代码来源:feeding_functions.py


示例18: bucket

def bucket(tensors,
           which_bucket,
           batch_size,
           num_buckets,
           num_threads=1,
           capacity=32,
           shapes=None,
           dynamic_pad=False,
           allow_smaller_final_batch=False,
           keep_input=None,
           shared_name=None,
           name=None):
  """Lazy bucketing of input tensors according to `which_bucket`.

  The argument `tensors` can be a list or a dictionary of tensors.
  The value returned by the function will be of the same type
  as `tensors`.

  The tensors entering this function are put into the bucket given by
  `which_bucket`.  Each bucket has its own queue.  When a bucket contains
  `batch_size` elements, this minibatch is pushed onto a top queue.  The
  tensors returned from this function are a the result of dequeueing the
  next minibatch from this top queue.

  This function is implemented using several queues. A `QueueRunner` for the
  queues is added to the current `Graph`'s `QUEUE_RUNNER` collection.

  As the returned tensors are the result of of a dequeue operation, evaluating
  them will throw a `tf.errors.OutOfRangeError` when the input queue is
  exhausted.  If these tensors are feeding another input queue, its queue runner
  will catch this exception, however, if they are used in your main thread
  you are responsible for catching this yourself.

  *N.B.:* If `dynamic_pad` is `False`, you must ensure that either
  (i) the `shapes` argument is passed, or (ii) all of the tensors in
  `tensors` must have fully-defined shapes. `ValueError` will be
  raised if neither of these conditions holds.

  If `dynamic_pad` is `True`, it is sufficient that the *rank* of the
  tensors is known, but individual dimensions may have shape `None`.
  In this case, for each enqueue the dimensions with value `None`
  may have a variable length; upon dequeue, the output tensors will be padded
  on the right to the maximum shape of the tensors in the current minibatch.
  For numbers, this padding takes value 0.  For strings, this padding is
  the empty string.  See `PaddingFIFOQueue` for more info.

  If `allow_smaller_final_batch` is `True`, a smaller batch value than
  `batch_size` is returned when the queues are closed and there are not enough
  elements to fill the batch, otherwise the pending elements are discarded.
  In addition, all output tensors' static shapes, as accessed via the
  `get_shape()` method will have a 0th `Dimension` value of `None`, and
  operations that depend on fixed batch_size would fail.

  Args:
    tensors: The list or dictionary of tensors, representing a single element,
      to bucket.  Nested lists are not supported.
    which_bucket: An `int32` scalar Tensor taking a value in `[0, num_buckets)`.
    batch_size: The new batch size pulled from the queue
      (python int or int32 scalar).
    num_buckets: A python integer, the number of buckets.
    num_threads: An integer.  The number of threads enqueuing `tensors`.
    capacity: An integer. The maximum number of minibatches in the top queue,
      and also the maximum number of elements within each bucket.
    shapes: (Optional) The shapes for each example.  Defaults to the
      inferred shapes for `tensors`.
    dynamic_pad: Boolean.  Allow variable dimensions in input shapes.
      The given dimensions are padded upon dequeue so that tensors within a
      batch have the same shapes.
    allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final
      batches to be smaller if there are insufficient items left in the queues.
    keep_input: (Optional).  A `bool` scalar Tensor.  If provided, this tensor
      controls whether the input is added to the queue or not.  If it evaluates
      `True`, then `tensors` are added to the bucket; otherwise they are
      dropped.  This tensor essentially acts as a filtering mechanism.
      The default behavior is to assume `keep_input=True`.
    shared_name: (Optional). If set, the queues will be shared under the given
      name across multiple sessions.
    name: (Optional) A name for the operations.

  Returns:
    A tuple `(bucket, outputs)` where `bucket` is
    a `int32` scalar tensor and `outputs` is a list or
    dictionary of batched outputs corresponding to elements of `tensors`.
    Every step will receive a new bucket of outputs.

  Raises:
    ValueError: If the `shapes` are not specified, and cannot be
      inferred from the elements of `tensors`.
  """
  tensor_list = _as_tensor_list(tensors)
  with ops.name_scope(name, "bucket", tensor_list) as name:
    tensor_list = _validate_bucket(tensor_list)
    (tensor_list, sparse_info) = _store_sparse_tensors(
        tensor_list, enqueue_many=False)

    # Round-trip batch_size to a tensor, and possibly back
    batch_size = ops.convert_to_tensor(
        batch_size, dtype=dtypes.int32, name="batch_size")
    static_batch_size = tensor_util.constant_value(batch_size)
    batch_size = (
#.........这里部分代码省略.........
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:101,代码来源:bucket_ops.py


示例19: _add_hidden_layer_summary

 def _add_hidden_layer_summary(self, value, tag):
   # TODO(zakaria): Move this code to tf.learn and add test.
   summary.scalar("%s:fraction_of_zero_values" % tag, nn.zero_fraction(value))
   summary.histogram("%s:activation" % tag, value)
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:4,代码来源:composable_model.py


示例20: shuffle_batch

该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python reservoir._ReservoirBucket函数代码示例发布时间:2022-05-27
下一篇:
Python utils.build_tensor_info函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap