• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tf_logging.warning函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.platform.tf_logging.warning函数的典型用法代码示例。如果您正苦于以下问题:Python warning函数的具体用法?Python warning怎么用?Python warning使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了warning函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: evaluate_generator

  def evaluate_generator(self,
                         generator,
                         steps=None,
                         max_queue_size=10,
                         workers=1,
                         use_multiprocessing=False,
                         **kwargs):
    """Evaluates the model on a data generator.

    The generator should return the same kind of data
    as accepted by `test_on_batch`.

    Arguments:
        generator: Generator yielding tuples (inputs, targets)
            or (inputs, targets, sample_weights)
        steps: Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        max_queue_size: maximum size for the generator queue
        workers: maximum number of processes to spin up
        use_multiprocessing: if True, use process based threading.
            Note that because this implementation
            relies on multiprocessing, you should not pass
            non picklable arguments to the generator
            as they can't be passed easily to children processes.
        **kwargs: support for legacy arguments.

    Returns:
        Scalar test loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
        ValueError: In case the generator yields
            data in an invalid format.
    """
    # Legacy support
    if 'max_q_size' in kwargs:
      max_queue_size = kwargs.pop('max_q_size')
      logging.warning('The argument `max_q_size` has been renamed '
                      '`max_queue_size`. Update your method calls accordingly.')
    if 'pickle_safe' in kwargs:
      use_multiprocessing = kwargs.pop('pickle_safe')
      logging.warning('The argument `pickle_safe` has been renamed '
                      '`use_multiprocessing`. '
                      'Update your method calls accordingly.')
    if kwargs:
      raise ValueError('Unrecognized keyword arguments: ' + str(kwargs))

    if not self.built:
      raise RuntimeError('The model needs to be compiled before being used.')
    return self.model.evaluate_generator(
        generator,
        steps,
        max_queue_size=max_queue_size,
        workers=workers,
        use_multiprocessing=use_multiprocessing)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:60,代码来源:sequential.py


示例2: _read_latest_config_files

  def _read_latest_config_files(self, run_path_pairs):
    """Reads and returns the projector config files in every run directory."""
    configs = {}
    config_fpaths = {}
    for run_name, assets_dir in run_path_pairs:
      config = projector_config_pb2.ProjectorConfig()
      config_fpath = os.path.join(assets_dir, PROJECTOR_FILENAME)
      if file_io.file_exists(config_fpath):
        file_content = file_io.read_file_to_string(config_fpath)
        text_format.Merge(file_content, config)
      has_tensor_files = False
      for embedding in config.embeddings:
        if embedding.tensor_path:
          has_tensor_files = True
          break

      if not config.model_checkpoint_path:
        # See if you can find a checkpoint file in the logdir.
        logdir = _assets_dir_to_logdir(assets_dir)
        ckpt_path = _find_latest_checkpoint(logdir)
        if not ckpt_path and not has_tensor_files:
          continue
        if ckpt_path:
          config.model_checkpoint_path = ckpt_path

      # Sanity check for the checkpoint file.
      if (config.model_checkpoint_path and
          not checkpoint_exists(config.model_checkpoint_path)):
        logging.warning('Checkpoint file "%s" not found',
                        config.model_checkpoint_path)
        continue
      configs[run_name] = config
      config_fpaths[run_name] = config_fpath
    return configs, config_fpaths
开发者ID:chenjun0210,项目名称:tensorflow,代码行数:34,代码来源:projector_plugin.py


示例3: __init__

  def __init__(self, model_dir=None, config=None):
    """Initializes a BaseEstimator instance.

    Args:
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator to
        continue training a previously saved model.
      config: A RunConfig instance.
    """
    # Model directory.
    self._model_dir = model_dir
    if self._model_dir is None:
      self._model_dir = tempfile.mkdtemp()
      logging.warning('Using temporary folder as model directory: %s',
                      self._model_dir)

    # Create a run configuration
    if config is None:
      self._config = BaseEstimator._Config()
      logging.warning('Using default config.')
    else:
      self._config = config
    logging.info('Using config: %s', str(vars(self._config)))

    # Set device function depending if there are replicas or not.
    self._device_fn = _get_replica_device_setter(self._config)

    # Features and targets TensorSignature objects.
    # TODO(wicke): Rename these to something more descriptive
    self._features_info = None
    self._targets_info = None

    self._graph = None
开发者ID:Nishant23,项目名称:tensorflow,代码行数:33,代码来源:estimator.py


示例4: new_func

 def new_func(*args, **kwargs):
   """Deprecation wrapper."""
   # TODO(apassos) figure out a way to have reasonable performance with
   # deprecation warnings and eager mode.
   if is_in_graph_mode.IS_IN_GRAPH_MODE() and _PRINT_DEPRECATION_WARNINGS:
     invalid_args = []
     named_args = tf_inspect.getcallargs(func, *args, **kwargs)
     for arg_name, spec in iter(deprecated_positions.items()):
       if (spec.position < len(args) and
           not (spec.has_ok_value and
                _same_value(named_args[arg_name], spec.ok_value))):
         invalid_args.append(arg_name)
     if is_varargs_deprecated and len(args) > len(arg_spec.args):
       invalid_args.append(arg_spec.varargs)
     if is_kwargs_deprecated and kwargs:
       invalid_args.append(arg_spec.varkw)
     for arg_name in deprecated_arg_names:
       if (arg_name in kwargs and
           not (deprecated_positions[arg_name].has_ok_value and
                _same_value(named_args[arg_name],
                            deprecated_positions[arg_name].ok_value))):
         invalid_args.append(arg_name)
     for arg_name in invalid_args:
       if (func, arg_name) not in _PRINTED_WARNING:
         if warn_once:
           _PRINTED_WARNING[(func, arg_name)] = True
         logging.warning(
             'From %s: calling %s (from %s) with %s is deprecated and will '
             'be removed %s.\nInstructions for updating:\n%s',
             _call_location(), decorator_utils.get_qualified_name(func),
             func.__module__, arg_name,
             'in a future version' if date is None else ('after %s' % date),
             instructions)
   return func(*args, **kwargs)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:34,代码来源:deprecation.py


示例5: get_config

 def get_config(self):
   config = {
       'axis': self.axis,
       'momentum': self.momentum,
       'epsilon': self.epsilon,
       'center': self.center,
       'scale': self.scale,
       'beta_initializer': initializers.serialize(self.beta_initializer),
       'gamma_initializer': initializers.serialize(self.gamma_initializer),
       'moving_mean_initializer':
           initializers.serialize(self.moving_mean_initializer),
       'moving_variance_initializer':
           initializers.serialize(self.moving_variance_initializer),
       'beta_regularizer': regularizers.serialize(self.beta_regularizer),
       'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
       'beta_constraint': constraints.serialize(self.beta_constraint),
       'gamma_constraint': constraints.serialize(self.gamma_constraint)
   }
   # Only add TensorFlow-specific parameters if they are set, so as to preserve
   # model compatibility with external Keras.
   if self.renorm:
     config['renorm'] = True
     config['renorm_clipping'] = self.renorm_clipping
     config['renorm_momentum'] = self.renorm_momentum
   if self.virtual_batch_size is not None:
     config['virtual_batch_size'] = self.virtual_batch_size
   # Note: adjustment is not serializable.
   if self.adjustment is not None:
     logging.warning('The `adjustment` function of this `BatchNormalization` '
                     'layer cannot be serialized and has been omitted from '
                     'the layer config. It will not be included when '
                     're-creating the layer from the saved config.')
   base_config = super(BatchNormalizationBase, self).get_config()
   return dict(list(base_config.items()) + list(config.items()))
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:34,代码来源:normalization.py


示例6: __init__

  def __init__(self,
               filepath,
               monitor='val_loss',
               verbose=0,
               save_best_only=False,
               save_weights_only=False,
               mode='auto',
               period=1):
    super(ModelCheckpoint, self).__init__()
    self.monitor = monitor
    self.verbose = verbose
    self.filepath = filepath
    self.save_best_only = save_best_only
    self.save_weights_only = save_weights_only
    self.period = period
    self.epochs_since_last_save = 0

    if mode not in ['auto', 'min', 'max']:
      logging.warning('ModelCheckpoint mode %s is unknown, '
                      'fallback to auto mode.', (mode), RuntimeWarning)
      mode = 'auto'

    if mode == 'min':
      self.monitor_op = np.less
      self.best = np.Inf
    elif mode == 'max':
      self.monitor_op = np.greater
      self.best = -np.Inf
    else:
      if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
        self.monitor_op = np.greater
        self.best = -np.Inf
      else:
        self.monitor_op = np.less
        self.best = np.Inf
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:35,代码来源:callbacks.py


示例7: _register_block_with_sequence_key

  def _register_block_with_sequence_key(self, layer_key, fisher_block):
    """Validates and registers the layer_key if it's a sequence."""
    inclusions = {
        fisher_elt
        for layer_elt in layer_key for fisher_elt in self.fisher_blocks
        if self._equal_or_subset(layer_elt, fisher_elt)
    }

    if not inclusions:
      self.fisher_blocks[layer_key] = fisher_block
      return

    for key in inclusions:
      fisher_block_key = key if isinstance(key, (tuple, list)) else (key,)
      if set(layer_key).issubset(fisher_block_key):
        logging.warning("Graph Registration Warning: tried to register "
                        "a subset ({}) of an already registered tuple "
                        "({}), skipping".format(layer_key, fisher_block_key))
        return
      if not set(fisher_block_key).issubset(layer_key):
        raise ValueError(
            "Inconsistent registration, expected new key to be a subset or "
            "superset of the existing key: existing is {}, new is {}".format(
                key, layer_key))
      else:
        self.fisher_blocks.pop(key)

    self.fisher_blocks[layer_key] = fisher_block
开发者ID:benoitsteiner,项目名称:tensorflow-opencl,代码行数:28,代码来源:layer_collection.py


示例8: __init__

  def __init__(self,
               monitor='val_loss',
               factor=0.1,
               patience=10,
               verbose=0,
               mode='auto',
               min_delta=1e-4,
               cooldown=0,
               min_lr=0,
               **kwargs):
    super(ReduceLROnPlateau, self).__init__()

    self.monitor = monitor
    if factor >= 1.0:
      raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.')
    if 'epsilon' in kwargs:
      min_delta = kwargs.pop('epsilon')
      logging.warning('`epsilon` argument is deprecated and '
                      'will be removed, use `min_delta` instead.')
    self.factor = factor
    self.min_lr = min_lr
    self.min_delta = min_delta
    self.patience = patience
    self.verbose = verbose
    self.cooldown = cooldown
    self.cooldown_counter = 0  # Cooldown counter.
    self.wait = 0
    self.best = 0
    self.mode = mode
    self.monitor_op = None
    self._reset()
开发者ID:xman,项目名称:tensorflow,代码行数:31,代码来源:callbacks.py


示例9: __init__

  def __init__(self,
               num_words=None,
               filters='!"#$%&()*+,-./:;<=>[email protected][\\]^_`{|}~\t\n',
               lower=True,
               split=' ',
               char_level=False,
               oov_token=None,
               **kwargs):
    # Legacy support
    if 'nb_words' in kwargs:
      logging.warning('The `nb_words` argument in `Tokenizer` '
                      'has been renamed `num_words`.')
      num_words = kwargs.pop('nb_words')
    if kwargs:
      raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))

    self.word_counts = OrderedDict()
    self.word_docs = {}
    self.filters = filters
    self.split = split
    self.lower = lower
    self.num_words = num_words
    self.document_count = 0
    self.char_level = char_level
    self.oov_token = oov_token
    self.index_docs = {}
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:26,代码来源:text.py


示例10: filter_distributed_callbacks

def filter_distributed_callbacks(callbacks_list):
  """Filter Callbacks based on the worker context when running multi-worker.

  Arguments:
    callbacks_list: A list of `Callback` instances.

  Returns:
    The list of `Callback` instances that should be run on this worker.
  """

  if not K.in_multi_worker_mode():
    raise ValueError(
        'filter_distributed_callbacks() should only be called when Keras '
        'is in multi worker mode.')

  worker_context = dc_context.get_current_worker_context()
  callbacks_list = callbacks_list or []
  if not [
      c for c in callbacks_list if isinstance(c, callbacks.ModelCheckpoint)
  ]:
    # TODO(rchao): Consider providing a ModelCheckpoint here if the user
    # fails to.
    logging.warning('ModelCheckpoint callback is not provided. '
                    'Workers will need to restart training if any fails.')
  # TODO(rchao): Add similar warning for restoring callback (to be designed).

  if callbacks_list is None or worker_context.is_chief:
    return callbacks_list

  # Some Callbacks should only run on the chief worker.
  return [
      callback for callback in callbacks_list if not callback._chief_worker_only
  ]  # pylint: disable=protected-access
开发者ID:kylin9872,项目名称:tensorflow,代码行数:33,代码来源:distributed_training_utils.py


示例11: new_func

 def new_func(*args, **kwargs):
     logging.warning(
         "%s (from %s) is experimental and may change or be removed at " "any time, and without warning.",
         decorator_utils.get_qualified_name(func),
         func.__module__,
     )
     return func(*args, **kwargs)
开发者ID:paolodedios,项目名称:tensorflow,代码行数:7,代码来源:experimental.py


示例12: _serve_runs

  def _serve_runs(self, request):
    """WSGI app serving a JSON object about runs and tags.

    Returns a mapping from runs to tagType to list of tags for that run.

    Args:
      request: A werkzeug request

    Returns:
      A werkzeug Response with the following content:
      {runName: {images: [tag1, tag2, tag3],
                 audio: [tag4, tag5, tag6],
                 scalars: [tagA, tagB, tagC],
                 histograms: [tagX, tagY, tagZ],
                 firstEventTimestamp: 123456.789}}
    """
    runs = self._multiplexer.Runs()
    for run_name, run_data in runs.items():
      try:
        run_data['firstEventTimestamp'] = self._multiplexer.FirstEventTimestamp(
            run_name)
      except ValueError:
        logging.warning('Unable to get first event timestamp for run %s',
                        run_name)
        run_data['firstEventTimestamp'] = None
    return http_util.Respond(request, runs, 'application/json')
开发者ID:LugarkPirog,项目名称:tensorflow,代码行数:26,代码来源:application.py


示例13: _read_config_files

  def _read_config_files(self, run_paths):
    configs = {}
    config_fpaths = {}
    for run_name, logdir in run_paths.items():
      config_fpath = os.path.join(logdir, PROJECTOR_FILENAME)
      if not file_io.file_exists(config_fpath):
        # Skip runs that have no config file.
        continue
      # Read the config file.
      file_content = file_io.read_file_to_string(config_fpath).decode('utf-8')
      config = ProjectorConfig()
      text_format.Merge(file_content, config)

      if not config.model_checkpoint_path:
        # See if you can find a checkpoint file in the logdir.
        ckpt_path = latest_checkpoint(logdir)
        if not ckpt_path:
          # Or in the parent of logdir.
          ckpt_path = latest_checkpoint(os.path.join('../', logdir))
          if not ckpt_path:
            logging.warning('Cannot find model checkpoint in %s', logdir)
            continue
        config.model_checkpoint_path = ckpt_path

      # Sanity check for the checkpoint file.
      if not file_io.file_exists(config.model_checkpoint_path):
        logging.warning('Checkpoint file %s not found',
                        config.model_checkpoint_path)
        continue
      configs[run_name] = config
      config_fpaths[run_name] = config_fpath
    return configs, config_fpaths
开发者ID:KalraA,项目名称:tensorflow,代码行数:32,代码来源:plugin.py


示例14: __init__

  def __init__(self, model_dir=None, config=None):
    # Model directory.
    self._model_dir = model_dir
    if self._model_dir is None:
      self._model_dir = tempfile.mkdtemp()
      logging.warning('Using temporary folder as model directory: %s',
                      self._model_dir)

    # Create a run configuration
    if config is None:
      self._config = BaseEstimator._Config()
    else:
      self._config = config

    # Set device function depending if there are replicas or not.
    if self._config.num_ps_replicas > 0:
      ps_ops = ['Variable', 'AutoReloadVariable']
      self._device_fn = device_setter.replica_device_setter(
          ps_tasks=self._config.num_ps_replicas,
          merge_devices=False, ps_ops=ps_ops)
    else:
      self._device_fn = None

    # Features and targets TensorSingature objects.
    self._features_info = None
    self._targets_info = None

    self._graph = None
开发者ID:carloscampo5200,项目名称:tensorflow,代码行数:28,代码来源:estimator.py


示例15: _model_not_ready

    def _model_not_ready(self, sess):
        """Checks if the model is ready or not.

    Args:
      sess: A `Session`.

    Returns:
      `None` if the model is ready, a `String` with the reason why it is not
      ready otherwise.
    """
        if self._ready_op is None:
            return None
        else:
            try:
                ready_value = sess.run(self._ready_op)
                # The model is considered ready if ready_op returns an empty 1-D tensor.
                # Also compare to `None` and dtype being int32 for backward
                # compatibility.
                if ready_value is None or ready_value.dtype == np.int32 or ready_value.size == 0:
                    return None
                else:
                    # TODO(sherrym): If a custom ready_op returns other types of tensor,
                    # or strings other than variable names, this message could be
                    # confusing.
                    non_initialized_varnames = ", ".join([i.decode("utf-8") for i in ready_value])
                    return "Variables not initialized: " + non_initialized_varnames
            except errors.FailedPreconditionError as e:
                if "uninitialized" not in str(e):
                    logging.warning("Model not ready raised: %s", str(e))
                    raise e
                return str(e)
开发者ID:RChandrasekar,项目名称:tensorflow,代码行数:31,代码来源:session_manager.py


示例16: __init__

  def __init__(self,
               config,
               train_batch_size,
               eval_batch_size,
               predict_batch_size,
               use_tpu,
               eval_on_tpu=True,
               embedding_config_spec=None):
    self._config = config
    self._train_batch_size = train_batch_size
    self._eval_batch_size = eval_batch_size
    self._predict_batch_size = predict_batch_size
    self._use_tpu = use_tpu
    logging.info('_TPUContext: eval_on_tpu %s', eval_on_tpu)
    if not use_tpu and eval_on_tpu:
      logging.warning('eval_on_tpu ignored because use_tpu is False.')

    self._eval_on_tpu = eval_on_tpu
    self._model_parallelism_enabled = (
        use_tpu and config.tpu_config.num_cores_per_replica)
    self._mode = None
    num_cores_per_replica = config.tpu_config.num_cores_per_replica
    if self._model_parallelism_enabled:
      self._computation_shape = _NUM_CORES_TO_COMPUTATION_SHAPE[
          num_cores_per_replica]
    else:
      self._computation_shape = None
    self._lazy_tpu_system_metadata_dict = {}  # key by master address
    self._lazy_device_assignment_dict = {}  # key by master address
    self._lazy_validation_dict = {}  # key by ModeKeys
    self._embedding_config_spec = embedding_config_spec
    self._lazy_embedding_config_dict = {}  # key by master address
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:32,代码来源:tpu_context.py


示例17: _ring_2d

def _ring_2d(height, width):
  """Ring-order of a height x width mesh.

  For example, in a 4x4 mesh, this returns the following order.
    0 -- 1 -- 2 -- 3
    |    |    |    |
    15-- 6 -- 5 -- 4
    |    |    |    |
    14-- 7 -- 8 -- 9
    |    |    |    |
    13-- 12-- 11-- 10

  Args:
    height: An integer represents the height.
    width: An integer represents the width.

  Returns:
    A list of [y, x] pairs with ring order.
  """
  if height == 1:
    return [(0, i) for i in range(width)]
  if width == 1:
    return [(i, 0) for i in range(height)]
  if height % 2 != 0:
    logging.warning("Odd dimension")
    return [(i % height, i // height) for i in range(width * height)]
  ret = [(0, 0)]
  for i in range(height // 2):
    for j in range(1, width):
      ret.append((2 * i, j))
    for j in range(width - 1, 0, -1):
      ret.append((2 * i + 1, j))
  for i in range(height - 1, 0, -1):
    ret.append((i, 0))
  return ret
开发者ID:aritratony,项目名称:tensorflow,代码行数:35,代码来源:device_assignment.py


示例18: on_epoch_end

 def on_epoch_end(self, epoch, logs=None):
   logs = logs or {}
   self.epochs_since_last_save += 1
   if self.epochs_since_last_save >= self.period:
     self.epochs_since_last_save = 0
     filepath = self.filepath.format(epoch=epoch + 1, **logs)
     if self.save_best_only:
       current = logs.get(self.monitor)
       if current is None:
         logging.warning('Can save best model only with %s available, '
                         'skipping.', self.monitor, RuntimeWarning)
       else:
         if self.monitor_op(current, self.best):
           if self.verbose > 0:
             print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
                   ' saving model to %s' % (epoch + 1, self.monitor, self.best,
                                            current, filepath))
           self.best = current
           if self.save_weights_only:
             self.model.save_weights(filepath, overwrite=True)
           else:
             self.model.save(filepath, overwrite=True)
         else:
           if self.verbose > 0:
             print('\nEpoch %05d: %s did not improve' % (epoch + 1,
                                                         self.monitor))
     else:
       if self.verbose > 0:
         print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
       if self.save_weights_only:
         self.model.save_weights(filepath, overwrite=True)
       else:
         self.model.save(filepath, overwrite=True)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:33,代码来源:callbacks.py


示例19: __init__

  def __init__(self, model_dir=None, config=None):
    """Initializes a BaseEstimator instance.

    Args:
      model_dir: Directory to save model parameters, graph and etc.
      config: A RunConfig instance.
    """
    # Model directory.
    self._model_dir = model_dir
    if self._model_dir is None:
      self._model_dir = tempfile.mkdtemp()
      logging.warning('Using temporary folder as model directory: %s',
                      self._model_dir)

    # Create a run configuration
    if config is None:
      self._config = BaseEstimator._Config()
    else:
      self._config = config

    # Set device function depending if there are replicas or not.
    if self._config.num_ps_replicas > 0:
      ps_ops = ['Variable', 'AutoReloadVariable']
      self._device_fn = device_setter.replica_device_setter(
          ps_tasks=self._config.num_ps_replicas,
          merge_devices=False, ps_ops=ps_ops)
    else:
      self._device_fn = None

    # Features and targets TensorSignature objects.
    # TODO(wicke): Rename these to something more descriptive
    self._features_info = None
    self._targets_info = None

    self._graph = None
开发者ID:735545856,项目名称:tensorflow,代码行数:35,代码来源:estimator.py


示例20: _padding_size_conv_pool

def _padding_size_conv_pool(node, kernel_size, stride, input_resolution=None):
  """Computes padding size given a TF convolution or pooling node.

  Args:
    node: Tensorflow node (NodeDef proto).
    kernel_size: Kernel size of node (integer).
    stride: Stride size of node (integer).
    input_resolution: Input resolution to assume, if not None (integer).

  Returns:
    total_padding: Total padding size (integer).
    padding: Padding size, applied to the left or top (integer).

  Raises:
    ValueError: If padding is invalid.
  """
  # In this case, we need to carefully consider the different TF padding modes.
  # The padding depends on kernel size, and may depend on input size. If it
  # depends on input size and input_resolution is None, we raise an exception.
  padding_attr = node.attr["padding"]
  logging.vlog(4, "padding_attr = %s", padding_attr)
  if padding_attr.s in _VALID_PADDING:
    total_padding = 0
    padding = 0
  elif padding_attr.s in _SAME_PADDING:
    if input_resolution is None:
      # In this case, we do not know the input resolution, so we can only know
      # the padding in some special cases.
      if kernel_size == 1:
        total_padding = 0
        padding = 0
      elif stride == 1:
        total_padding = kernel_size - 1
        padding = int(math.floor(float(total_padding) / 2))
      elif stride == 2 and kernel_size % 2 == 0:
        # In this case, we can be sure of the left/top padding, but not of the
        # total padding.
        total_padding = None
        padding = int(math.floor((float(kernel_size) - 1) / 2))
      else:
        total_padding = None
        padding = None
        logging.warning(
            "Padding depends on input size, which means that the effective "
            "padding may be different depending on the input image "
            "dimensionality. In this case, alignment check will be skipped. If"
            " you know the input resolution, please set it.")
    else:
      # First, compute total_padding based on documentation.
      if input_resolution % stride == 0:
        total_padding = int(max(float(kernel_size - stride), 0.0))
      else:
        total_padding = int(
            max(float(kernel_size - (input_resolution % stride)), 0.0))
      # Then, compute left/top padding.
      padding = int(math.floor(float(total_padding) / 2))

  else:
    raise ValueError("Invalid padding operation %s" % padding_attr.s)
  return total_padding, padding
开发者ID:andrewharp,项目名称:tensorflow,代码行数:60,代码来源:parse_layer_parameters.py



注:本文中的tensorflow.python.platform.tf_logging.warning函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python model_analyzer.profile函数代码示例发布时间:2022-05-27
下一篇:
Python tf_logging.warn函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap