本文整理汇总了Python中tensorflow.python.platform.tf_logging.debug函数的典型用法代码示例。如果您正苦于以下问题:Python debug函数的具体用法?Python debug怎么用?Python debug使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了debug函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _connect_ops
def _connect_ops(self, info):
"""Connect the previously copied ops."""
for op in info.sgv.ops:
logging.debug("Finalizing op: %s", op.name)
op_ = info.transformed_ops[op]
# pylint: disable=protected-access
if op_.inputs:
raise ValueError("The newly transformed op should not have "
"any inputs yet: {}".format(op_.name))
inputs_ = [self._transformed_t(info, t) for t in op.inputs]
for t in inputs_:
op_._add_input(t)
# Finalize original op.
if op._original_op:
original_op = info.transform_original_op_handler(info, op._original_op)
if original_op is None:
logging.debug("Could not find original op for: %s", op_.name)
else:
op_._original_op = original_op
# Finalize control inputs:
control_inputs_ = [self.transform_control_input_handler(info, ci)
for ci in op.control_inputs]
control_inputs_ = [ci for ci in control_inputs_ if ci is not None]
reroute.add_control_inputs(op_, control_inputs_)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:transform.py
示例2: transform
def transform(self, feature_column):
"""Returns a Tensor which represents given feature_column.
Args:
feature_column: An instance of FeatureColumn.
Returns:
A Tensor which represents given feature_column. It may create a new Tensor
or re-use an existing one.
Raises:
ValueError: if FeatureColumn cannot be handled by this Transformer.
"""
logging.debug('Transforming feature_column %s', feature_column)
if feature_column in self._columns_to_tensors:
# Feature_column is already transformed.
return self._columns_to_tensors[feature_column]
feature_column.insert_transformed_feature(self._columns_to_tensors)
if feature_column not in self._columns_to_tensors:
raise ValueError('Column {} is not supported.'.format(
feature_column.name))
return self._columns_to_tensors[feature_column]
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:25,代码来源:feature_column_ops.py
示例3: _transformed_t
def _transformed_t(self, info, t, consumer_op):
"""Return tre transformed tensor of `t`."""
if t in info.transformed_ts:
# If op is in the subgraph, just return its transformed counterpart.
return info.transformed_ts[t]
if t in info.sgv_inputs_set:
# `t` is an input of the subgraph.
return self.transform_external_input_handler(info, t)
elif t.op in info.ops:
# `t` is an internal tensor but is not transformed yet because it
# belongs to a graph cycle.
logging.debug("Cyclic tensor: t.name = %s", t.name)
# Try to find an existing tensor we can use for now,
# otherwise create one. We'll rewire this later.
if consumer_op.type == "Merge":
first_input = consumer_op.inputs[0]
tmp_t_ = self._transformed_t(info, first_input, consumer_op)
elif t.op.type == "Enter":
enter_input = t.op.inputs[0]
tmp_t_ = self._transformed_t(info, enter_input, consumer_op)
else:
with info.graph_.as_default():
tmp_t_ = util.make_placeholder_from_tensor(t, scope=info.scope_,
prefix="geph_tmp")
logging.debug("Created temporary placeholder: %s.", tmp_t_.name)
# Register as temporary and return.
info.tmp_cyclic_ts.append((t, tmp_t_, consumer_op))
return tmp_t_
else:
# `t` is a hidden input of the subgraph.
return self.transform_external_hidden_input_handler(info, t)
开发者ID:bikong2,项目名称:tensorflow,代码行数:32,代码来源:transform.py
示例4: evaluate_and_export
def evaluate_and_export(self):
"""Evaluate and (maybe) export the current model.
Returns:
Evaluation results. Returns `None` if current round of evaluation is
skipped.
Raises:
RuntimeError: for any unexpected internal error.
TypeError: if evaluation result has wrong type.
"""
latest_ckpt_path = self._estimator.latest_checkpoint()
if not latest_ckpt_path:
self._log_err_msg('Estimator is not trained yet. Will start an '
'evaluation when a checkpoint is ready.')
return None
if latest_ckpt_path == self._previous_ckpt_path:
self._log_err_msg(
'No new checkpoint ready for evaluation. Skip the current '
'evaluation pass as evaluation results are expected to be same '
'for the same checkpoint.')
return None
eval_result = self._estimator.evaluate(
input_fn=self._eval_spec.input_fn,
steps=self._eval_spec.steps,
name=self._eval_spec.name,
checkpoint_path=latest_ckpt_path,
hooks=self._eval_spec.hooks)
if not eval_result:
raise RuntimeError(
'Internal error: `Estimator.evaluate` should never return empty '
'result.')
if not isinstance(eval_result, dict):
raise TypeError(
'`Estimator.evaluate` should return dict. Given {}.'.format(
type(eval_result)))
if ops.GraphKeys.GLOBAL_STEP not in eval_result:
raise RuntimeError(
'Internal error: `Estimator.evaluate` result should have '
'`global_step` in result. Given {}'.format(eval_result))
is_the_final_export = (eval_result[ops.GraphKeys.GLOBAL_STEP] >=
self._max_training_steps
if self._max_training_steps else False)
self._export_eval_result(eval_result, latest_ckpt_path,
is_the_final_export)
if is_the_final_export:
logging.debug('Calling exporter with the `is_the_final_export=True`.')
self._is_final_export_triggered = True
self._last_warning_time = 0
self._previous_ckpt_path = latest_ckpt_path
return eval_result
开发者ID:ilya-edrenkin,项目名称:tensorflow,代码行数:56,代码来源:training.py
示例5: _SetPath
def _SetPath(self, path):
old_path = self._path
if old_path and not gcs.IsGCSPath(old_path):
# We're done with the path, so store its size.
size = io_wrapper.Size(old_path)
logging.debug('Setting latest size of %s to %d', old_path, size)
self._finalized_sizes[old_path] = size
self._path = path
self._loader = self._loader_factory(path)
开发者ID:0ruben,项目名称:tensorflow,代码行数:10,代码来源:directory_watcher.py
示例6: __init__
def __init__(self, file_path):
if file_path is None:
raise ValueError('A file path is required')
file_path = resource_loader.readahead_file_path(file_path)
logging.debug('Opening a record reader pointing at %s', file_path)
self._reader = pywrap_tensorflow.PyRecordReader_New(
compat.as_bytes(file_path), 0)
# Store it for logging purposes.
self._file_path = file_path
if not self._reader:
raise IOError('Failed to open a record reader pointing to %s' % file_path)
开发者ID:0ruben,项目名称:tensorflow,代码行数:11,代码来源:event_file_loader.py
示例7: _input_thread_fn_for_loading
def _input_thread_fn_for_loading(self, session, enqueue_ops, iterations):
count = 0
while True:
signal = self._signal_queue.get()
if signal == _SIGNAL.STOP:
logging.info('Stop Infeed input thread.')
return
for i in range(iterations):
logging.debug('InfeedEnqueue data for iteration (%d, %d)', count, i)
session.run(enqueue_ops)
count += 1
开发者ID:awisbith,项目名称:tensorflow,代码行数:12,代码来源:tpu_estimator.py
示例8: run
def run(self):
# Don't fetch logs or adjust timing: just ping the watchdog.
#
# If we hit an exception, reset our session as it is likely broken.
while self._running:
try:
self._worker_manager.ping(request=None)
time.sleep(self.ping_interval)
except errors.OpError as e:
# Catch any TF errors that occur so we don't stop sending heartbeats
logging.debug('Caught error while sending heartbeat: %s', e)
self._reset_manager()
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:12,代码来源:session_support.py
示例9: Load
def Load(self):
# Create a temp file to hold the contents that we haven't seen yet.
with tempfile.NamedTemporaryFile(prefix='tf-gcs-') as temp_file:
name = temp_file.name
logging.debug('Temp file created at %s', name)
gcs.CopyContents(self._gcs_path, self._gcs_offset, temp_file)
reader = pywrap_tensorflow.PyRecordReader_New(compat.as_bytes(name), 0)
while reader.GetNext():
event = event_pb2.Event()
event.ParseFromString(reader.record())
yield event
logging.debug('No more events in %s', name)
self._gcs_offset += reader.offset()
开发者ID:0-T-0,项目名称:tensorflow,代码行数:13,代码来源:gcs_file_loader.py
示例10: every_n_step_end
def every_n_step_end(self, step, outputs):
super(ValidationMonitor, self).every_n_step_end(step, outputs)
# TODO(mdan): The use of step below is probably misleading.
# The code should probably use the step from the checkpoint, because
# that's what is being evaluated.
if self._estimator is None:
raise ValueError("Missing call to set_estimator.")
# Check that we are not running evaluation on the same checkpoint.
latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
if latest_path is None:
logging.debug("Skipping evaluation since model has not been saved yet "
"at step %d.", step)
return False
if latest_path is not None and latest_path == self._latest_path:
logging.debug("Skipping evaluation due to same checkpoint %s for step %d "
"as for step %d.", latest_path, step,
self._latest_path_step)
return False
self._latest_path = latest_path
self._latest_path_step = step
# Run evaluation and log it.
validation_outputs = self._estimator.evaluate(
x=self.x, y=self.y, input_fn=self.input_fn, batch_size=self.batch_size,
steps=self.eval_steps, metrics=self.metrics, hooks=self.hooks,
name=self.name)
stats = []
for name in validation_outputs:
stats.append("%s = %s" % (name, str(validation_outputs[name])))
logging.info("Validation (step %d): %s", step, ", ".join(stats))
# Early stopping logic.
if self.early_stopping_rounds is not None:
if self.early_stopping_metric not in validation_outputs:
raise ValueError("Metric %s missing from outputs %s." % (
self.early_stopping_metric, set(validation_outputs.keys())))
current_value = validation_outputs[self.early_stopping_metric]
if (self._best_value is None or (self.early_stopping_metric_minimize and
(current_value < self._best_value)) or
(not self.early_stopping_metric_minimize and
(current_value > self._best_value))):
self._best_value = current_value
self._best_value_step = step
stop_now = (step - self._best_value_step >= self.early_stopping_rounds)
if stop_now:
logging.info("Stopping. Best step: {} with {} = {}."
.format(self._best_value_step,
self.early_stopping_metric, self._best_value))
self._early_stopped = True
return True
return False
开发者ID:Immexxx,项目名称:tensorflow,代码行数:51,代码来源:monitors.py
示例11: Load
def Load(self):
"""Loads all new values from disk.
Calling Load multiple times in a row will not 'drop' events as long as the
return value is not iterated over.
Yields:
All values that were written to disk that have not been yielded yet.
"""
while self._reader.GetNext():
event = event_pb2.Event()
event.ParseFromString(self._reader.record())
yield event
logging.debug('No more events in %s', self._file_path)
开发者ID:0ruben,项目名称:tensorflow,代码行数:14,代码来源:event_file_loader.py
示例12: copy_op_handler
def copy_op_handler(info, op, copy_shape=True):
"""Copy a `tf.Operation`.
Args:
info: Transform._TmpInfo instance.
op: the `tf.Operation` to be copied.
copy_shape: also copy the shape of the tensor
Returns:
A `(op, op_outputs)` tuple containing the transformed op and its outputs.
"""
# pylint: disable=protected-access
# Clone the node def:
node_def_ = deepcopy(op._node_def)
# Transform name:
name_ = info.new_name(op.name)
name_ = info.graph_.unique_name(name_)
node_def_.name = name_
# Copy the other inputs needed for initialization
output_types_ = op._output_types[:]
input_types_ = op._input_types[:]
# Make a copy of the op_def too.
# Its unique to every _type_ of Operation.
op_def_ = deepcopy(op._op_def)
# Initialize a new Operation instance
op_ = tf_ops.Operation(node_def_, info.graph_, [], output_types_,
[], input_types_, None, op_def_)
# copy the shape over
if copy_shape:
for t, t_ in zip(op.outputs, op_.outputs):
t_.set_shape(t.get_shape())
# Finalize original op.
if op._original_op:
original_op = info.transform_original_op_handler(info, op._original_op)
if original_op is None:
logging.debug("Could not find original op of: %s", op_.name)
else:
op_._original_op = original_op
# Add op to the graph
info.graph_._add_op(op_)
return op_, op_.outputs
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:49,代码来源:transform.py
示例13: evaluate_and_export
def evaluate_and_export(self):
"""Evaluate and (maybe) export the current model.
Returns:
A tuple of `EvalResult` instance and the export results.
Raises:
RuntimeError: for any unexpected internal error.
TypeError: if evaluation result has wrong type.
"""
latest_ckpt_path = self._estimator.latest_checkpoint()
if not latest_ckpt_path:
self._log_err_msg('Estimator is not trained yet. Will start an '
'evaluation when a checkpoint is ready.')
return _EvalResult(status=_EvalStatus.MISSING_CHECKPOINT), []
if latest_ckpt_path == self._previous_ckpt_path:
self._log_err_msg(
'No new checkpoint ready for evaluation. Skip the current '
'evaluation pass as evaluation results are expected to be same '
'for the same checkpoint.')
return _EvalResult(status=_EvalStatus.NO_NEW_CHECKPOINT), []
metrics = self._estimator.evaluate(
input_fn=self._eval_spec.input_fn,
steps=self._eval_spec.steps,
name=self._eval_spec.name,
checkpoint_path=latest_ckpt_path,
hooks=self._eval_spec.hooks)
# _EvalResult validates the metrics.
eval_result = _EvalResult(
status=_EvalStatus.EVALUATED,
metrics=metrics,
checkpoint_path=latest_ckpt_path)
is_the_final_export = (
eval_result.metrics[ops.GraphKeys.GLOBAL_STEP] >=
self._max_training_steps if self._max_training_steps else False)
export_results = self._export_eval_result(eval_result,
is_the_final_export)
if is_the_final_export:
logging.debug('Calling exporter with the `is_the_final_export=True`.')
self._is_final_export_triggered = True
self._last_warning_time = 0
self._previous_ckpt_path = latest_ckpt_path
return eval_result, export_results
开发者ID:AnishShah,项目名称:tensorflow,代码行数:49,代码来源:training.py
示例14: ping
def ping(self, request=None, timeout_in_ms=5000):
"""Ping all workers, returning the parsed status results."""
if request is None:
request = event_pb2.WorkerHeartbeatRequest()
options = config_pb2.RunOptions(timeout_in_ms=timeout_in_ms)
results = self._session.run(
self._ops,
feed_dict={self._request_placeholder: request.SerializeToString()},
options=options)
parsed_results = [
event_pb2.WorkerHeartbeatResponse.FromString(res_pb)
for res_pb in results
]
logging.debug('Ping results: %s', parsed_results)
return parsed_results
开发者ID:AnishShah,项目名称:tensorflow,代码行数:16,代码来源:session_support.py
示例15: _copy_ops
def _copy_ops(self, info):
"""Copy ops without connecting them."""
for op in info.sgv.ops:
logging.debug("Copying op: %s", op.name)
# TODO(fkp): return a subgraph?
op_, op_outputs_ = self.transform_op_handler(info, op)
if op is op_:
raise ValueError("In-place tranformation not allowed.")
# Process op.
info.transformed_ops[op] = op_
self.assign_collections_handler(info, op, op_)
# Process output tensors.
for op_output, op_output_ in zip(op.outputs, op_outputs_):
info.transformed_ts[op_output] = op_output_
self.assign_collections_handler(info, op_output, op_output_)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:17,代码来源:transform.py
示例16: _Create
def _Create(baseclass, subclass_name, *args, **kwargs):
"""Creates an instance of a named subclass.
Args:
baseclass: The expected base class.
subclass_name: The fully-qualified type name of the subclass to create.
*args: Passed to the subclass constructor.
**kwargs: Passed to the subclass constructor.
Returns:
An instance of the named subclass, or None on error.
"""
subclass = _GetClass(subclass_name)
if subclass is None:
return None # _GetClass() already logged an error
if not issubclass(subclass, baseclass):
logging.debug('Class "%s" is not a subclass of "%s"', subclass_name,
baseclass.__name__)
return None
return subclass(*args, **kwargs)
开发者ID:JiweiHe,项目名称:models,代码行数:20,代码来源:registry.py
示例17: _SetPath
def _SetPath(self, path):
"""Sets the current path to watch for new events.
This also records the size of the old path, if any. If the size can't be
found, an error is logged.
Args:
path: The full path of the file to watch.
"""
old_path = self._path
if old_path and not gcs.IsGCSPath(old_path):
try:
# We're done with the path, so store its size.
size = io_wrapper.Size(old_path)
logging.debug('Setting latest size of %s to %d', old_path, size)
self._finalized_sizes[old_path] = size
except (IOError, OSError) as e:
logging.error('Unable to get size of %s: %s', old_path, e)
self._path = path
self._loader = self._loader_factory(path)
开发者ID:10imaging,项目名称:tensorflow,代码行数:21,代码来源:directory_watcher.py
示例18: _subscribe
def _subscribe(tensor, side_effects, control_cache):
"""Helper method that subscribes a single tensor to a list of side_effects.
This method will check if the given tensor has already been subscribed or if
it's a tensor returned by a previous call to `subscribe()` and, if so, will
reuse the existing identity op, appending the given side effects to the list
of existing ones.
Args:
tensor: The `tf.Tensor` to be subscribed.
side_effects: List of side_effect functions, see subscribe for details.
control_cache: `_ControlOutputCache` helper to get control_outputs faster.
Returns:
The modified replacement to the passed in tensor which triggers the side
effects or the given tensor, if it was already been subscribed.
"""
# Check if the given tensor has a numpy compatible type (see dtypes.py).
# If not, we cannot subscribe it, so we just return the original tensor.
if not tensor.dtype.is_numpy_compatible:
logging.debug(('Tensor {} has an un-supported {} type and cannot be '
'subscribed.').format(tensor.name, tensor.dtype))
return tensor
if _is_subscribed_identity(tensor):
return _subscribe_extend(tensor, side_effects)
# Check if the given tensor has already been subscribed by inspecting its
# outputs.
name_scope = tensor.op.name + '/subscription/Identity'
consumers = tensor.consumers()
matching_ops = [op for op in consumers if op.name.startswith(name_scope)]
assert len(matching_ops) <= 1, ('Op {} must only have one subscription '
'op connected to it').format(tensor.op.name)
if len(matching_ops) == 1:
candidate_tensor = matching_ops[0].outputs[0]
if _is_subscribed_identity(candidate_tensor):
return _subscribe_extend(candidate_tensor, side_effects)
return _subscribe_new(tensor, side_effects, control_cache)
开发者ID:aritratony,项目名称:tensorflow,代码行数:40,代码来源:subscribe.py
示例19: _connect_control_inputs
def _connect_control_inputs(self, info):
"""Connect the previously copied ops."""
for op in info.sgv.ops:
logging.debug("Connecting control inputs of op: %s", op.name)
op_ = info.transformed_ops[op]
# Finalize original op.
# TODO(fkp): Stop worrying about _original_op and remove this code?
# pylint: disable=protected-access
if op._original_op:
original_op = self.transform_original_op_handler(info, op._original_op)
if original_op is None:
logging.debug("Could not find original op for: %s", op_.name)
else:
op_._original_op = original_op
# pylint: enable=protected-access
# Finalize control inputs:
control_inputs_ = [self.transform_control_input_handler(info, ci)
for ci in op.control_inputs]
control_inputs_ = [ci for ci in control_inputs_ if ci is not None]
reroute.add_control_inputs(op_, control_inputs_)
开发者ID:bikong2,项目名称:tensorflow,代码行数:22,代码来源:transform.py
示例20: Load
def Load(self):
"""Loads all new values from disk.
Calling Load multiple times in a row will not 'drop' events as long as the
return value is not iterated over.
Yields:
All values that were written to disk that have not been yielded yet.
"""
while True:
try:
with errors.raise_exception_on_not_ok_status() as status:
self._reader.GetNext(status)
except (errors.DataLossError, errors.OutOfRangeError):
# We ignore partial read exceptions, because a record may be truncated.
# PyRecordReader holds the offset prior to the failed read, so retrying
# will succeed.
break
event = event_pb2.Event()
event.ParseFromString(self._reader.record())
yield event
logging.debug('No more events in %s', self._file_path)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:22,代码来源:event_file_loader.py
注:本文中的tensorflow.python.platform.tf_logging.debug函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论