• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python logging.warning函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.platform.logging.warning函数的典型用法代码示例。如果您正苦于以下问题:Python warning函数的具体用法?Python warning怎么用?Python warning使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了warning函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _MaybeDeleteOldCheckpoints

    def _MaybeDeleteOldCheckpoints(self, latest_save_path):
        """Deletes old checkpoints if necessary.

    Always keep the last max_to_keep checkpoints.  If
    keep_checkpoint_every_n_hours was specified, keep an additional checkpoint
    every N hours. For example, if N is 0.5, an additional checkpoint is kept
    for every 0.5 hours of training; if N is 10, an additional checkpoint is
    kept for every 10 hours of training.

    Args:
      latest_save_path: Name including path of checkpoint file to save.
    """
        if not self._max_to_keep:
            return
        # Remove first from list if the same name was used before.
        for p in self._last_checkpoints:
            if latest_save_path == self._CheckpointFilename(p):
                self._last_checkpoints.remove(p)
        # Append new path to list
        self._last_checkpoints.append((latest_save_path, time.time()))
        # If more than max_to_keep, remove oldest.
        if len(self._last_checkpoints) > self._max_to_keep:
            p = self._last_checkpoints.pop(0)
            # Do not delete the file if we keep_checkpoint_every_n_hours is set and we
            # have reached N hours of training.
            should_keep = p[1] > self._next_checkpoint_time
            if should_keep:
                self._next_checkpoint_time += self._keep_checkpoint_every_n_hours * 3600
                return
            # Otherwise delete the files.
            for f in gfile.Glob(self._CheckpointFilename(p)):
                try:
                    gfile.Remove(f)
                except gfile.GOSError as e:
                    logging.warning("Ignoring: %s", str(e))
开发者ID:adeelzaman,项目名称:tensorflow,代码行数:35,代码来源:saver.py


示例2: get_checkpoint_state

def get_checkpoint_state(checkpoint_dir, latest_filename=None):
  """Returns CheckpointState proto from the "checkpoint" file.

  If the "checkpoint" file contains a valid CheckpointState
  proto, returns it.

  Args:
    checkpoint_dir: The directory of checkpoints.
    latest_filename: Optional name of the checkpoint file.  Default to
      'checkpoint'.

  Returns:
    A CheckpointState if the state was available, None
    otherwise.
  """
  ckpt = None
  coord_checkpoint_filename = _GetCheckpointFilename(
      checkpoint_dir, latest_filename)
  f = None
  try:
    # Check that the file exists before opeining it to avoid
    # many lines of errors from colossus in the logs.
    if gfile.Exists(coord_checkpoint_filename):
      f = gfile.FastGFile(coord_checkpoint_filename, mode="r")
      ckpt = CheckpointState()
      text_format.Merge(f.read(), ckpt)
  except gfile.FileError:
    # It's ok if the file cannot be read
    return None
  except text_format.ParseError, e:
    logging.warning(str(e))
    logging.warning("%s: Checkpoint ignored", coord_checkpoint_filename)
    return None
开发者ID:ange3,项目名称:deepcode,代码行数:33,代码来源:saver.py


示例3: _default_global_step_tensor

 def _default_global_step_tensor(self):
   try:
     gs = ops.get_default_graph().get_tensor_by_name("global_step:0")
     if gs.dtype.base_dtype in [dtypes.int32, dtypes.int64]:
       return gs
     else:
       logging.warning("Found 'global_step' is not an int type: %s", gs.dtype)
       return None
   except KeyError:
     return None
开发者ID:Anandnitrate,项目名称:tensorflow,代码行数:10,代码来源:supervisor.py


示例4: start_standard_services

  def start_standard_services(self, sess):
    """Start the standard services for 'sess'.

    This starts services in the background.  The services started depend
    on the parameters to the constructor and may include:

      - A Summary thread computing summaries every save_summaries_secs.
      - A Checkpoint thread saving the model every every save_model_secs.
      - A StepCounter thread measure step time.

    Args:
      sess: A Session.

    Returns:
      A list of threads that are running the standard services.  You can use
      the Supervisor's Coordinator to join these threads with:
        sv.coord.Join(<list of threads>)

    Raises:
      RuntimeError: If called with a non-chief Supervisor.
      ValueError: If not `logdir` was passed to the constructor as the
        services need a log directory.
    """
    if not self._is_chief:
      raise RuntimeError("Only chief supervisor can start standard services. "
                         "Because only chief supervisors can write events.")

    if not self._logdir:
      logging.warning("Standard services need a 'logdir' "
                      "passed to the SessionManager")
      return

    if self._global_step is not None and self._summary_writer:
      # Only add the session log if we keep track of global step.
      # TensorBoard cannot use START message for purging expired events
      # if there is no step value.
      current_step = training_util.global_step(sess, self._global_step)
      self._summary_writer.add_session_log(
          SessionLog(status=SessionLog.START),
          current_step)

    threads = []
    if self._save_summaries_secs and self._summary_writer:
      if self._summary_op is not None:
        threads.append(SVSummaryThread(self, sess))
      if self._global_step is not None:
        threads.append(SVStepCounterThread(self, sess))
    if self.saver and self._save_model_secs:
      threads.append(SVTimerCheckpointThread(self, sess))
    for t in threads:
      t.start()
    self._started_threads.extend(threads)

    return threads
开发者ID:2er0,项目名称:tensorflow,代码行数:54,代码来源:supervisor.py


示例5: main

def main(unused_argv=None):
  if FLAGS.debug:
    logging.set_verbosity(logging.DEBUG)
    logging.info('TensorBoard is in debug mode.')

  if not FLAGS.logdir:
    logging.error('A logdir must be specified. Run `tensorboard --help` for '
                  'details and examples.')
    return -1

  logging.info('Starting TensorBoard in directory %s', os.getcwd())

  path_to_run = ParseEventFilesFlag(FLAGS.logdir)
  logging.info('TensorBoard path_to_run is: %s', path_to_run)
  multiplexer = event_multiplexer.EventMultiplexer(
      size_guidance=TENSORBOARD_SIZE_GUIDANCE)
  # Ensure the Multiplexer initializes in a loaded state before it adds runs
  # So it can handle HTTP requests while runs are loading

  multiplexer.Reload()
  def _Load():
    start = time.time()
    for (path, name) in six.iteritems(path_to_run):
      multiplexer.AddRunsFromDirectory(path, name)
    multiplexer.Reload()
    duration = time.time() - start
    logging.info('Multiplexer done loading. Load took %0.1f secs', duration)
    t = threading.Timer(LOAD_INTERVAL, _Load)
    t.daemon = True
    t.start()
  t = threading.Timer(0, _Load)
  t.daemon = True
  t.start()

  factory = functools.partial(tensorboard_handler.TensorboardHandler,
                              multiplexer)
  try:
    server = ThreadedHTTPServer((FLAGS.host, FLAGS.port), factory)
  except socket.error:
    logging.error('Tried to connect to port %d, but that address is in use.',
                  FLAGS.port)
    return -2
  try:
    tag = resource_loader.load_resource('tensorboard/TAG').strip()
    logging.info('TensorBoard is tag: %s', tag)
  except IOError:
    logging.warning('Unable to read TensorBoard tag')
    tag = ''

  status_bar.SetupStatusBarInsideGoogle('TensorBoard %s' % tag, FLAGS.port)
  print('Starting TensorBoard %s on port %d' % (tag, FLAGS.port))
  print('(You can navigate to http://%s:%d)' % (FLAGS.host, FLAGS.port))
  server.serve_forever()
开发者ID:chaabni,项目名称:tensorflow,代码行数:53,代码来源:tensorboard.py


示例6: update_checkpoint_state

def update_checkpoint_state(save_dir,
                            model_checkpoint_path,
                            all_model_checkpoint_paths=None,
                            latest_filename=None):
  """Updates the content of the 'checkpoint' file.

  This updates the checkpoint file containing a CheckpointState
  proto.

  Args:
    save_dir: Directory where the model was saved.
    model_checkpoint_path: The checkpoint file.
    all_model_checkpoint_paths: list of strings.  Paths to all not-yet-deleted
      checkpoints, sorted from oldest to newest.  If this is a non-empty list,
      the last element must be equal to model_checkpoint_path.  These paths
      are also saved in the CheckpointState proto.
    latest_filename: Optional name of the checkpoint file.  Default to
      'checkpoint'.

  Raises:
    RuntimeError: If the save paths conflict.
  """
  if all_model_checkpoint_paths is None:
    all_model_checkpoint_paths = []

  if all_model_checkpoint_paths and all_model_checkpoint_paths[-1] != model_checkpoint_path:
    logging.warning(
        "%s is not in all_model_checkpoint_paths! Manually adding it.",
        model_checkpoint_path)
    all_model_checkpoint_paths.append(model_checkpoint_path)
  # Writes the "checkpoint" file for the coordinator for later restoration.
  coord_checkpoint_filename = _GetCheckpointFilename(save_dir, latest_filename)

  # Relative paths need to be rewritten to be relative to the "save_dir".
  if not os.path.isabs(model_checkpoint_path):
    model_checkpoint_path = os.path.relpath(model_checkpoint_path, save_dir)

  all_model_checkpoint_paths = [
      os.path.relpath(p, save_dir) for p in all_model_checkpoint_paths
      if not os.path.isabs(p)
  ]

  if coord_checkpoint_filename == model_checkpoint_path:
    raise RuntimeError("Save path '%s' conflicts with path used for "
                       "checkpoint state.  Please use a different save path." %
                       model_checkpoint_path)
  coord_checkpoint_proto = CheckpointState(
      model_checkpoint_path=model_checkpoint_path,
      all_model_checkpoint_paths=all_model_checkpoint_paths)
  f = gfile.FastGFile(coord_checkpoint_filename, mode="w")
  f.write(text_format.MessageToString(coord_checkpoint_proto))
  f.close()
开发者ID:JesseLivezey,项目名称:tensorflow,代码行数:52,代码来源:saver.py


示例7: add_graph

  def add_graph(self, graph, global_step=None, graph_def=None):
    """Adds a `Graph` to the event file.

    The graph described by the protocol buffer will be displayed by
    TensorBoard. Most users pass a graph in the constructor instead.

    Args:
      graph: A `Graph` object, such as `sess.graph`.
      global_step: Number. Optional global step counter to record with the
        graph.
      graph_def: DEPRECATED. Use the `graph` parameter instead.

    Raises:
      ValueError: If both graph and graph_def are passed to the method.
    """

    if graph is not None and graph_def is not None:
      raise ValueError("Please pass only graph, or graph_def (deprecated), "
                       "but not both.")

    if isinstance(graph, ops.Graph) or isinstance(graph_def, ops.Graph):
      # The user passed a `Graph`.

      # Check if the user passed it via the graph or the graph_def argument and
      # correct for that.
      if not isinstance(graph, ops.Graph):
        logging.warning("When passing a `Graph` object, please use the `graph`"
                        " named argument instead of `graph_def`.")
        graph = graph_def

      # Serialize the graph with additional info.
      true_graph_def = graph.as_graph_def(add_shapes=True)
    elif (isinstance(graph, graph_pb2.GraphDef)
          or isinstance(graph_def, graph_pb2.GraphDef)):
      # The user passed a `GraphDef`.
      logging.warning("Passing a `GraphDef` to the SummaryWriter is deprecated."
                      " Pass a `Graph` object instead, such as `sess.graph`.")

      # Check if the user passed it via the graph or the graph_def argument and
      # correct for that.
      if isinstance(graph, graph_pb2.GraphDef):
        true_graph_def = graph
      else:
        true_graph_def = graph_def

    else:
      # The user passed neither `Graph`, nor `GraphDef`.
      raise TypeError("The passed graph must be an instance of `Graph` "
                      "or the deprecated `GraphDef`")
    # Finally, add the graph_def to the summary writer.
    self._add_graph_def(true_graph_def, global_step)
开发者ID:MPesin,项目名称:tensorflow,代码行数:51,代码来源:summary_io.py


示例8: _default_global_step_tensor

  def _default_global_step_tensor(self):
    """Returns the global_step from the default graph.

    Returns:
      The global step `Tensor` or `None`.
    """
    try:
      gs = ops.get_default_graph().get_tensor_by_name("global_step:0")
      if gs.dtype.base_dtype in [dtypes.int32, dtypes.int64]:
        return gs
      else:
        logging.warning("Found 'global_step' is not an int type: %s", gs.dtype)
        return None
    except KeyError:
      return None
开发者ID:2er0,项目名称:tensorflow,代码行数:15,代码来源:supervisor.py


示例9: _MakeShape

def _MakeShape(v, arg_name):
  """Convert v into a TensorShapeProto."""
  # Args:
  #   v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
  #   arg_name: String, for error messages.

  # Returns:
  #   A TensorShapeProto.
  if isinstance(v, tensor_shape_pb2.TensorShapeProto):
    for d in v.dim:
      if d.name:
        logging.warning("Warning: TensorShapeProto with a named dimension: %s",
                        str(v))
        break
    return v
  return tensor_shape.as_shape(v).as_proto()
开发者ID:2er0,项目名称:tensorflow,代码行数:16,代码来源:op_def_library.py


示例10: get_checkpoint_state

def get_checkpoint_state(checkpoint_dir, latest_filename=None):
  """Returns CheckpointState proto from the "checkpoint" file.

  If the "checkpoint" file contains a valid CheckpointState
  proto, returns it.

  Args:
    checkpoint_dir: The directory of checkpoints.
    latest_filename: Optional name of the checkpoint file.  Default to
      'checkpoint'.

  Returns:
    A CheckpointState if the state was available, None
    otherwise.
  """
  ckpt = None
  coord_checkpoint_filename = _GetCheckpointFilename(
      checkpoint_dir, latest_filename)
  f = None
  try:
    # Check that the file exists before opening it to avoid
    # many lines of errors from colossus in the logs.
    if gfile.Exists(coord_checkpoint_filename):
      f = gfile.FastGFile(coord_checkpoint_filename, mode="r")
      ckpt = CheckpointState()
      text_format.Merge(f.read(), ckpt)
      # For relative model_checkpoint_path and all_model_checkpoint_paths,
      # prepend checkpoint_dir.
      if not os.path.isabs(checkpoint_dir):
        if not os.path.isabs(ckpt.model_checkpoint_path):
          ckpt.model_checkpoint_path = os.path.join(
              checkpoint_dir, ckpt.model_checkpoint_path)
        for i in range(len(ckpt.all_model_checkpoint_paths)):
          p = ckpt.all_model_checkpoint_paths[i]
          if not os.path.isabs(p):
            ckpt.all_model_checkpoint_paths[i] = os.path.join(checkpoint_dir, p)
  except IOError:
    # It's ok if the file cannot be read
    return None
  except text_format.ParseError as e:
    logging.warning(str(e))
    logging.warning("%s: Checkpoint ignored", coord_checkpoint_filename)
    return None
  finally:
    if f:
      f.close()
  return ckpt
开发者ID:hessenh,项目名称:Human-Activity-Recognition,代码行数:47,代码来源:saver.py


示例11: main

def main(unused_argv=None):
  if FLAGS.debug:
    logging.set_verbosity(logging.DEBUG)
    logging.info('TensorBoard is in debug mode.')

  if not FLAGS.logdir:
    msg = ('A logdir must be specified. Run `tensorboard --help` for '
           'details and examples.')
    logging.error(msg)
    print(msg)
    return -1

  logging.info('Starting TensorBoard in directory %s', os.getcwd())
  path_to_run = server.ParseEventFilesSpec(FLAGS.logdir)
  logging.info('TensorBoard path_to_run is: %s', path_to_run)

  multiplexer = event_multiplexer.EventMultiplexer(
      size_guidance=server.TENSORBOARD_SIZE_GUIDANCE,
      purge_orphaned_data=FLAGS.purge_orphaned_data)
  server.StartMultiplexerReloadingThread(multiplexer, path_to_run,
                                         FLAGS.reload_interval)
  try:
    tb_server = server.BuildServer(multiplexer, FLAGS.host, FLAGS.port)
  except socket.error:
    if FLAGS.port == 0:
      msg = 'Unable to find any open ports.'
      logging.error(msg)
      print(msg)
      return -2
    else:
      msg = 'Tried to connect to port %d, but address is in use.' % FLAGS.port
      logging.error(msg)
      print(msg)
      return -3

  try:
    tag = resource_loader.load_resource('tensorboard/TAG').strip()
    logging.info('TensorBoard is tag: %s', tag)
  except IOError:
    logging.warning('Unable to read TensorBoard tag')
    tag = ''

  status_bar.SetupStatusBarInsideGoogle('TensorBoard %s' % tag, FLAGS.port)
  print('Starting TensorBoard %s on port %d' % (tag, FLAGS.port))
  print('(You can navigate to http://%s:%d)' % (FLAGS.host, FLAGS.port))
  tb_server.serve_forever()
开发者ID:2er0,项目名称:tensorflow,代码行数:46,代码来源:tensorboard.py


示例12: _add_collection_def

def _add_collection_def(meta_graph_def, key):
  """Adds a collection to MetaGraphDef protocol buffer.

  Args:
    meta_graph_def: MetaGraphDef protocol buffer.
    key: One of the GraphKeys or user-defined string.
  """
  if not isinstance(key, six.string_types) and not isinstance(key, bytes):
    logging.warning("Only collections with string type keys will be "
                    "serialized. This key has %s" % type(key))
    return
  collection_list = ops.get_collection(key)
  if not collection_list:
    return
  try:
    col_def = meta_graph_def.collection_def[key]
    to_proto = ops.get_to_proto_function(key)
    proto_type = ops.get_collection_proto_type(key)
    if to_proto:
      kind = "bytes_list"
      for x in collection_list:
        # Additional type check to make sure the returned proto is indeed
        # what we expect.
        proto = to_proto(x)
        assert isinstance(proto, proto_type)
        getattr(col_def, kind).value.append(proto.SerializeToString())
    else:
      kind = _get_kind_name(collection_list[0])
      if kind == "node_list":
        getattr(col_def, kind).value.extend([x.name for x in collection_list])
      elif kind == "bytes_list":
        # NOTE(opensource): This force conversion is to work around the fact
        # that Python3 distinguishes between bytes and strings.
        getattr(col_def, kind).value.extend(
            [compat.as_bytes(x) for x in collection_list])
      else:
        getattr(col_def, kind).value.extend([x for x in collection_list])
  except Exception as e:  # pylint: disable=broad-except
    logging.warning("Error encountered when serializing %s.\n"
                    "Type is unsupported, or the types of the items don't "
                    "match field type in CollectionDef.\n%s" % (key, str(e)))
    if key in meta_graph_def.collection_def:
      del meta_graph_def.collection_def[key]
    return
开发者ID:AboorvaDevarajan,项目名称:tensorflow,代码行数:44,代码来源:saver.py


示例13: _show_compute

  def _show_compute(self, show_dataflow):
    """Visualize the computation activity."""
    for dev_stats in self._step_stats.dev_stats:
      device_pid = self._device_pids[dev_stats.device]

      for node_stats in dev_stats.node_stats:
        tid = node_stats.thread_id
        start_time = node_stats.all_start_micros
        end_time = node_stats.all_start_micros + node_stats.all_end_rel_micros
        _, _, inputs = self._parse_op_label(node_stats.timeline_label)

        self._emit_op(node_stats, device_pid)

        for input_name in inputs:
          if input_name not in self._tensors:
            # This can happen when partitioning has inserted a Send/Recv.
            # We remove the numeric suffix so that the dataflow appears to
            # come from the original node.  Ideally, the StepStats would
            # contain logging for the Send and Recv nodes.
            index = input_name.rfind('/_')
            if index > 0:
              input_name = input_name[:index]

          if input_name in self._tensors:
            tensor = self._tensors[input_name]
            tensor.add_ref(start_time)
            tensor.add_unref(end_time - 1)

            if show_dataflow:
              # We use a different flow ID for every graph edge.
              create_time, create_pid, create_tid = self._flow_starts[
                  input_name]
              # Don't add flows when producer and consumer ops are on the same
              # pid/tid since the horizontal arrows clutter the visualization.
              if create_pid != device_pid or create_tid != tid:
                flow_id = self._alloc_flow_id()
                self._chrome_trace.emit_flow_start(input_name, create_time,
                                                   create_pid, create_tid,
                                                   flow_id)
                self._chrome_trace.emit_flow_end(input_name, start_time,
                                                 device_pid, tid, flow_id)
          else:
            logging.warning('Can\'t find tensor %s', input_name)
开发者ID:6779660,项目名称:tensorflow,代码行数:43,代码来源:timeline.py


示例14: load_resource

def load_resource(path):
  """Load the resource at given path, where path is relative to tensorflow/.

  Args:
    path: a string resource path relative to tensorflow/.

  Returns:
    The contents of that resource.

  Raises:
    IOError: If the path is not found, or the resource can't be opened.
  """
  path = os.path.join('tensorflow', path)
  path = os.path.abspath(path)
  try:
    with open(path, 'rb') as f:
      return f.read()
  except IOError as e:
    logging.warning('IOError %s on path %s', e, path)
开发者ID:adeelzaman,项目名称:tensorflow,代码行数:19,代码来源:_resource_loader.py


示例15: AddRun

  def AddRun(self, path, name=None):
    """Add a run to the multiplexer.

    If the name is not specified, it is the same as the path.

    If a run by that name exists, and we are already watching the right path,
      do nothing. If we are watching a different path, replace the event
      accumulator.

    If `AutoUpdate` or `Reload` have been called, it will `AutoUpdate` or
    `Reload` the newly created accumulators. This maintains the invariant that
    once the Multiplexer was activated, all of its accumulators are active.

    Args:
      path: Path to the event files (or event directory) for given run.
      name: Name of the run to add. If not provided, is set to path.

    Returns:
      The `EventMultiplexer`.
    """
    if name is None or name is '':
      name = path
    accumulator = None
    with self._accumulators_mutex:
      if name not in self._accumulators or self._paths[name] != path:
        if name in self._paths and self._paths[name] != path:
          # TODO(danmane) - Make it impossible to overwrite an old path with
          # a new path (just give the new path a distinct name)
          logging.warning('Conflict for name %s: old path %s, new path %s',
                          name, self._paths[name], path)
        logging.info('Constructing EventAccumulator for %s', path)
        accumulator = event_accumulator.EventAccumulator(path,
                                                         self._size_guidance)
        self._accumulators[name] = accumulator
        self._paths[name] = path
    if accumulator:
      if self._reload_called:
        accumulator.Reload()
      if self._autoupdate_called:
        accumulator.AutoUpdate(self._autoupdate_interval)
    return self
开发者ID:adam-erickson,项目名称:tensorflow,代码行数:41,代码来源:event_multiplexer.py


示例16: _model_not_ready

  def _model_not_ready(self, sess):
    """Checks if the model is ready or not.

    Args:
      sess: A `Session`.

    Returns:
      `None` if the model is ready, a `String` with the reason why it is not
      ready otherwise.
    """
    if self._ready_op is None:
      return None
    else:
      try:
        sess.run(self._ready_op)
        return None
      except errors.FailedPreconditionError as e:
        if "uninitialized" not in str(e):
          logging.warning("Model not ready raised: %s", str(e))
          raise  e
        return str(e)
开发者ID:2php,项目名称:tensorflow,代码行数:21,代码来源:session_manager.py


示例17: main

def main(unused_argv=None):
  if FLAGS.debug:
    logging.set_verbosity(logging.DEBUG)
    logging.info('TensorBoard is in debug mode.')

  if not FLAGS.logdir:
    logging.error('A logdir must be specified. Run `tensorboard --help` for '
                  'details and examples.')
    return -1

  if FLAGS.debug:
    logging.info('Starting TensorBoard in directory %s', os.getcwd())

  path_to_run = ParseEventFilesFlag(FLAGS.logdir)
  multiplexer = event_multiplexer.AutoloadingMultiplexer(
      path_to_run=path_to_run, interval_secs=60,
      size_guidance=TENSORBOARD_SIZE_GUIDANCE)

  multiplexer.AutoUpdate(interval=30)

  factory = functools.partial(tensorboard_handler.TensorboardHandler,
                              multiplexer)
  try:
    server = ThreadedHTTPServer((FLAGS.host, FLAGS.port), factory)
  except socket.error:
    logging.error('Tried to connect to port %d, but that address is in use.',
                  FLAGS.port)
    return -2
  try:
    tag = resource_loader.load_resource('tensorboard/TAG').strip()
    logging.info('TensorBoard is tag: %s', tag)
  except IOError:
    logging.warning('Unable to read TensorBoard tag')
    tag = ''

  status_bar.SetupStatusBarInsideGoogle('TensorBoard %s' % tag, FLAGS.port)
  print('Starting TensorBoard %s on port %d' % (tag, FLAGS.port))
  print('(You can navigate to http://localhost:%d)' % FLAGS.port)
  server.serve_forever()
开发者ID:bgyss,项目名称:tensorflow,代码行数:39,代码来源:tensorboard.py


示例18: _MaybeDeleteOldCheckpoints

  def _MaybeDeleteOldCheckpoints(self, latest_save_path,
                                 meta_graph_suffix="meta"):
    """Deletes old checkpoints if necessary.

    Always keep the last `max_to_keep` checkpoints.  If
    `keep_checkpoint_every_n_hours` was specified, keep an additional checkpoint
    every `N` hours. For example, if `N` is 0.5, an additional checkpoint is
    kept for every 0.5 hours of training; if `N` is 10, an additional
    checkpoint is kept for every 10 hours of training.

    Args:
      latest_save_path: Name including path of checkpoint file to save.
      meta_graph_suffix: Suffix for MetaGraphDef file. Defaults to 'meta'.
    """
    if not self.saver_def.max_to_keep:
      return
    # Remove first from list if the same name was used before.
    for p in self._last_checkpoints:
      if latest_save_path == self._CheckpointFilename(p):
        self._last_checkpoints.remove(p)
    # Append new path to list
    self._last_checkpoints.append((latest_save_path, time.time()))
    # If more than max_to_keep, remove oldest.
    if len(self._last_checkpoints) > self.saver_def.max_to_keep:
      p = self._last_checkpoints.pop(0)
      # Do not delete the file if we keep_checkpoint_every_n_hours is set and we
      # have reached N hours of training.
      should_keep = p[1] > self._next_checkpoint_time
      if should_keep:
        self._next_checkpoint_time += (
            self.saver_def.keep_checkpoint_every_n_hours * 3600)
        return
      # Otherwise delete the files.
      for f in gfile.Glob(self._CheckpointFilename(p)):
        try:
          gfile.Remove(f)
          gfile.Remove(".".join([f, meta_graph_suffix]))
        except OSError as e:
          logging.warning("Ignoring: %s", str(e))
开发者ID:hdzz,项目名称:tensorflow,代码行数:39,代码来源:saver.py


示例19: _add_collection_def

def _add_collection_def(meta_graph_def, key):
  """Adds a collection to MetaGraphDef protocol buffer.

  Args:
    meta_graph_def: MetaGraphDef protocol buffer.
    key: One of the GraphKeys or user-defined string.
  """
  if not isinstance(key, (str, bytes, unicode)):
    logging.warning("Only collections with string type keys will be "
                    "serialized. This key has %s" % type(key))
    return
  collection_list = ops.get_collection(key)
  if not collection_list:
    return
  try:
    col_def = meta_graph_def.collection_def[key]
    to_proto = ops.get_to_proto_function(key)
    proto_type = ops.get_collection_proto_type(key)
    if to_proto:
      kind = "bytes_list"
      for x in collection_list:
        # Additional type check to make sure the returned proto is indeed
        # what we expect.
        proto = to_proto(x)
        assert isinstance(proto, proto_type)
        getattr(col_def, kind).value.append(proto.SerializeToString())
    else:
      kind = _get_kind_name(collection_list[0])
      if kind == "node_list":
        getattr(col_def, kind).value.extend([x.name for x in collection_list])
      else:
        getattr(col_def, kind).value.extend([x for x in collection_list])
  except Exception, e:  # pylint: disable=broad-except
    logging.warning("Type is unsupported, or the types of the items don't "
                    "match field type in CollectionDef.\n%s" % str(e))
    if key in meta_graph_def.collection_def:
      del meta_graph_def.collection_def[key]
    return
开发者ID:hdzz,项目名称:tensorflow,代码行数:38,代码来源:saver.py


示例20: replica_device_setter

def replica_device_setter(ps_tasks=0, ps_device="/job:ps",
                          worker_device="/job:worker", merge_devices=True,
                          cluster=None, ps_ops=None):
  """Return a `device function` to use when building a Graph for replicas.

  Device Functions are used in `with tf.device(device_function):` statement to
  automatically assign devices to `Operation` objects as they are constructed,
  Device constraints are added from the inner-most context first, working
  outwards. The merging behavior adds constraints to fields that are yet unset
  by a more inner context. Currently the fields are (job, task, cpu/gpu).

  If `cluster` is `None`, and `ps_tasks` is 0, the returned function is a no-op.

  For example,

  ```python
  # To build a cluster with two ps jobs on hosts ps0 and ps1, and 3 worker
  # jobs on hosts worker0, worker1 and worker2.
  cluster_spec = {
      "ps": ["ps0:2222", "ps1:2222"],
      "worker": ["worker0:2222", "worker1:2222", "worker2:2222"]}
  with tf.device(tf.replica_device_setter(cluster=cluster_spec)):
    # Build your graph
    v1 = tf.Variable(...)  # assigned to /job:ps/task:0
    v2 = tf.Variable(...)  # assigned to /job:ps/task:1
    v3 = tf.Variable(...)  # assigned to /job:ps/task:0
  # Run compute
  ```

  Args:
    ps_tasks: Number of tasks in the `ps` job.
    ps_device: String.  Device of the `ps` job.  If empty no `ps` job is used.
      Defaults to `ps`.
    worker_device: String.  Device of the `worker` job.  If empty no `worker`
      job is used.
    merge_devices: `Boolean`. If `True`, merges or only sets a device if the
      device constraint is completely unset. merges device specification rather
      than overriding them.
    cluster: `ClusterDef` proto or `ClusterSpec`.
    ps_ops: List of `Operation` objects that need to be placed on `ps` devices.

  Returns:
    A function to pass to `tf.device()`.

  Raises:
    TypeError if `cluster` is not a dictionary or `ClusterDef` protocol buffer.
  """
  if cluster is not None:
    if isinstance(cluster, server_lib.ClusterSpec):
      cluster_spec = cluster.as_cluster_spec()
    else:
      cluster_spec = server_lib.ClusterSpec(cluster).as_cluster_spec()
    # Get ps_job_name from ps_device by striping "/job:".
    ps_job_name = ps_device.lstrip("/job:")
    if ps_job_name not in cluster_spec or cluster_spec[ps_job_name] is None:
      return None
    ps_tasks = len(cluster_spec[ps_job_name])

  if ps_tasks == 0:
    return None
  else:
    if not merge_devices:
      logging.warning(
          "DEPRECATION: It is recommended to set merge_devices=true in "
          "replica_device_setter")
    chooser = _ReplicaDeviceChooser(
        ps_tasks, ps_device, worker_device, merge_devices, ps_ops)
    return chooser.device_function
开发者ID:4chin,项目名称:tensorflow,代码行数:68,代码来源:device_setter.py



注:本文中的tensorflow.python.platform.logging.warning函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python resource_loader.get_path_to_datafile函数代码示例发布时间:2022-05-27
下一篇:
Python logging.vlog函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap