• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python weights_broadcast_ops.broadcast_weights函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.weights_broadcast_ops.broadcast_weights函数的典型用法代码示例。如果您正苦于以下问题:Python broadcast_weights函数的具体用法?Python broadcast_weights怎么用?Python broadcast_weights使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了broadcast_weights函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: weighted

  def weighted(y_true, y_pred, weights, mask=None):
    """Wrapper function.

    Arguments:
        y_true: `y_true` argument of `fn`.
        y_pred: `y_pred` argument of `fn`.
        weights: Weights tensor.
        mask: Mask tensor.

    Returns:
        Scalar tensor.
    """
    # score_array has ndim >= 2
    score_array = fn(y_true, y_pred)
    if mask is not None:
      mask = math_ops.cast(mask, y_pred.dtype)
      # Update weights with mask.
      if weights is None:
        weights = mask
      else:
        # Update shape of weights if possible before adding mask.
        # Update dimensions of weights to match with mask if possible.
        mask, _, weights = metrics_module.squeeze_or_expand_dimensions(
            mask, None, weights)
        try:
          # Broadcast weights if possible.
          weights = weights_broadcast_ops.broadcast_weights(weights, mask)
          weights *= mask
        except ValueError:
          score_array *= mask
          score_array /= K.mean(mask)
          # TODO(psv): Handle case when mask and weight shapes are not
          # compatible.

    # Apply sample weighting.
    if weights is not None:

      # Update dimensions of weights to match with values if possible.
      score_array, _, weights = metrics_module.squeeze_or_expand_dimensions(
          score_array, None, weights)
      try:
        # Broadcast weights if possible.
        weights = weights_broadcast_ops.broadcast_weights(weights, score_array)
      except ValueError:
        # Reduce values to same ndim as weight array.
        ndim = K.ndim(score_array)
        weight_ndim = K.ndim(weights)
        score_array = K.mean(score_array, axis=list(range(weight_ndim, ndim)))

      score_array = math_ops.multiply(score_array, weights)
      score_array = math_ops.reduce_sum(score_array)
      weights = math_ops.reduce_sum(weights)
      score_array = metrics_module.safe_div(score_array, weights)
    return K.mean(score_array)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:54,代码来源:training_utils.py


示例2: _test_valid

 def _test_valid(self, weights, values, expected):
   static_op = weights_broadcast_ops.broadcast_weights(
       weights=weights, values=values)
   weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
   values_placeholder = array_ops.placeholder(dtypes_lib.float32)
   dynamic_op = weights_broadcast_ops.broadcast_weights(
       weights=weights_placeholder, values=values_placeholder)
   with self.test_session():
     self.assertAllEqual(expected, static_op.eval())
     self.assertAllEqual(expected, dynamic_op.eval(feed_dict={
         weights_placeholder: weights,
         values_placeholder: values,
     }))
开发者ID:1000sprites,项目名称:tensorflow,代码行数:13,代码来源:weights_broadcast_test.py


示例3: _test_invalid

 def _test_invalid(self, weights, values):
   error_msg = 'weights can not be broadcast to values'
   with self.assertRaisesRegexp(ValueError, error_msg):
     weights_broadcast_ops.broadcast_weights(weights=weights, values=values)
   weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
   values_placeholder = array_ops.placeholder(dtypes_lib.float32)
   dynamic_op = weights_broadcast_ops.broadcast_weights(
       weights=weights_placeholder, values=values_placeholder)
   with self.test_session():
     with self.assertRaisesRegexp(errors_impl.OpError, error_msg):
       dynamic_op.eval(feed_dict={
           weights_placeholder: weights,
           values_placeholder: values,
       })
开发者ID:1000sprites,项目名称:tensorflow,代码行数:14,代码来源:weights_broadcast_test.py


示例4: _num_present

def _num_present(losses, weights, per_batch=False):
  """Computes the number of elements in the loss function induced by `weights`.

  A given weights tensor induces different numbers of usable elements in the
  `losses` tensor. The `weights` tensor is broadcast across `losses` for all
  possible dimensions. For example, if `losses` is a tensor of dimension
  `[4, 5, 6, 3]` and `weights` is a tensor of shape `[4, 5]`, then `weights` is,
  in effect, tiled to match the shape of `losses`. Following this effective
  tile, the total number of present elements is the number of non-zero weights.

  Args:
    losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
    weights: `Tensor` of shape `[]`, `[batch_size]` or
      `[batch_size, d1, ... dK]`, where K < N.
    per_batch: Whether to return the number of elements per batch or as a sum
      total.

  Returns:
    The number of present (non-zero) elements in the losses tensor. If
      `per_batch` is `True`, the value is returned as a tensor of size
      `[batch_size]`. Otherwise, a single scalar tensor is returned.
  """
  with ops.name_scope(None, "num_present", (losses, weights)) as scope:
    weights = math_ops.to_float(weights)
    present = array_ops.where(
        math_ops.equal(weights, 0.0),
        array_ops.zeros_like(weights),
        array_ops.ones_like(weights))
    present = weights_broadcast_ops.broadcast_weights(present, losses)
    if per_batch:
      return math_ops.reduce_sum(
          present, axis=math_ops.range(1, array_ops.rank(present)),
          keep_dims=True, name=scope)
    return math_ops.reduce_sum(present, name=scope)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:34,代码来源:losses_impl.py


示例5: _predictions_mean

def _predictions_mean(predictions, weights=None, name=None):
  with ops.name_scope(
      name, 'predictions_mean', (predictions, weights)) as scope:
    predictions = math_ops.to_float(predictions, name='predictions')
    if weights is not None:
      weights = weights_broadcast_ops.broadcast_weights(weights, predictions)
    return metrics_lib.mean(predictions, weights=weights, name=scope)
开发者ID:vaccine,项目名称:tensorflow,代码行数:7,代码来源:head.py


示例6: update_state

  def update_state(self, values, sample_weight=None):
    """Accumulates statistics for computing the mean.

    For example, if `values` is [1, 3, 5, 7] then the mean is 4. If
    the `sample_weight` is specified as [1, 1, 0, 0] then the mean would be 2.

    Args:
      values: Per-example value.
      sample_weight: Optional weighting of each example. Defaults to 1.
    """
    values = math_ops.cast(values, self._dtype)
    if sample_weight is None:
      num_values = math_ops.cast(array_ops.size(values), self._dtype)
    else:
      sample_weight = math_ops.cast(sample_weight, self._dtype)

      # Update dimensions of weights to match with values.
      values, _, sample_weight = _squeeze_or_expand_dimensions(
          values, None, sample_weight)
      sample_weight = weights_broadcast_ops.broadcast_weights(
          sample_weight, values)
      num_values = math_ops.reduce_sum(sample_weight)
      values = math_ops.multiply(values, sample_weight)
    values = math_ops.reduce_sum(values)

    # Update state variables
    state_ops.assign_add(self.total, values)
    state_ops.assign_add(self.count, num_values)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:28,代码来源:metrics.py


示例7: compute_weighted_loss

def compute_weighted_loss(losses,
                          sample_weight=None,
                          reduction=ReductionV2.SUM_OVER_BATCH_SIZE,
                          name=None):
  """Computes the weighted loss.

  Args:
    losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
    sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
      `losses`, or be broadcastable to `losses`.
    reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to loss.
      Default value is `SUM_OVER_BATCH_SIZE`.
    name: Optional name for the op.

  Raises:
    ValueError: If the shape of `sample_weight` is not compatible with `losses`.

  Returns:
    Weighted loss `Tensor` of the same type as `losses`. If `reduction` is
    `NONE`, this has the same shape as `losses`; otherwise, it is scalar.
  """
  ReductionV2.validate(reduction)

  # If this function is called directly, then we just default 'AUTO' to
  # 'SUM_OVER_BATCH_SIZE'. Eg. Canned estimator use cases.
  if reduction == ReductionV2.AUTO:
    reduction = ReductionV2.SUM_OVER_BATCH_SIZE
  if sample_weight is None:
    sample_weight = 1.0
  with K.name_scope(name or 'weighted_loss'):
    # Save the `reduction` argument for loss normalization when distributing
    # to multiple replicas. Used only for estimator + v1 optimizer flow.
    ops.get_default_graph()._last_loss_reduction = reduction  # pylint: disable=protected-access

    # Update dimensions of `sample_weight` to match with `losses` if possible.
    losses, _, sample_weight = squeeze_or_expand_dimensions(
        losses, None, sample_weight)
    losses = ops.convert_to_tensor(losses)
    input_dtype = losses.dtype
    losses = math_ops.cast(losses, dtypes.float32)
    sample_weight = math_ops.cast(sample_weight, dtypes.float32)

    try:
      # Broadcast weights if possible.
      sample_weight = weights_broadcast_ops.broadcast_weights(
          sample_weight, losses)
    except ValueError:
      # Reduce values to same ndim as weight array.
      ndim = K.ndim(losses)
      weight_ndim = K.ndim(sample_weight)
      losses = K.mean(losses, axis=list(range(weight_ndim, ndim)))

    sample_weight.shape.assert_is_compatible_with(losses.shape)
    weighted_losses = math_ops.multiply(losses, sample_weight)
    # Apply reduction function to the individual weighted losses.
    loss = reduce_weighted_loss(weighted_losses, reduction)
    # Convert the result back to the input type.
    loss = math_ops.cast(loss, input_dtype)
    return loss
开发者ID:aritratony,项目名称:tensorflow,代码行数:59,代码来源:losses_utils.py


示例8: _auc

def _auc(labels, predictions, weights=None, curve='ROC', name=None):
  with ops.name_scope(name, 'auc', (predictions, labels, weights)) as scope:
    predictions = math_ops.to_float(predictions, name='predictions')
    if weights is not None:
      weights = weights_broadcast_ops.broadcast_weights(weights, predictions)
    return metrics_lib.auc(
        labels=labels, predictions=predictions, weights=weights, curve=curve,
        name=scope)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:8,代码来源:head.py


示例9: compute_weighted_loss

def compute_weighted_loss(losses,
                          sample_weight=None,
                          reduction=losses_impl.ReductionV2.SUM_OVER_BATCH_SIZE,
                          name=None):
  """Computes the weighted loss.

  Args:
    losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
    sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
      `losses`, or be broadcastable to `losses`.
    reduction: Type of `tf.losses.Reduction` to apply to loss. Default value is
      `SUM_OVER_BATCH_SIZE`.
    name: Optional name for the op.

  Raises:
    ValueError: If the shape of `sample_weight` is not compatible with `losses`.

  Returns:
    Weighted loss `Tensor` of the same type as `losses`. If `reduction` is
    `NONE`, this has the same shape as `losses`; otherwise, it is scalar.
  """
  losses_impl.ReductionV2.validate(reduction)
  if sample_weight is None:
    sample_weight = 1.0
  with ops.name_scope(name, 'weighted_loss', (losses, sample_weight)):
    # Save the `reduction` argument for loss normalization when distributing
    # to multiple replicas.
    # TODO(josh11b): Associate it with the returned op for more precision.
    ops.get_default_graph()._last_loss_reduction = reduction  # pylint: disable=protected-access

    # Update dimensions of `sample_weight` to match with `losses` if possible.
    losses, _, sample_weight = squeeze_or_expand_dimensions(
        losses, None, sample_weight)
    losses = ops.convert_to_tensor(losses)
    input_dtype = losses.dtype
    losses = math_ops.to_float(losses)
    sample_weight = math_ops.to_float(sample_weight)

    try:
      # Broadcast weights if possible.
      sample_weight = weights_broadcast_ops.broadcast_weights(
          sample_weight, losses)
    except ValueError:
      # Reduce values to same ndim as weight array.
      ndim = K.ndim(losses)
      weight_ndim = K.ndim(sample_weight)
      losses = K.mean(losses, axis=list(range(weight_ndim, ndim)))

    sample_weight.get_shape().assert_is_compatible_with(losses.get_shape())
    weighted_losses = math_ops.multiply(losses, sample_weight)
    # Apply reduction function to the individual weighted losses.
    loss = _reduce_weighted_loss(weighted_losses, reduction)
    # Convert the result back to the input type.
    loss = math_ops.cast(loss, input_dtype)
    return loss
开发者ID:aeverall,项目名称:tensorflow,代码行数:55,代码来源:losses_utils.py


示例10: _auc

def _auc(labels, predictions, weights=None, curve='ROC', name=None):
  with ops.name_scope(name, 'auc', (predictions, labels, weights)) as scope:
    predictions = math_ops.to_float(predictions, name='predictions')
    if labels.dtype.base_dtype != dtypes.bool:
      logging.warning('Casting %s labels to bool.', labels.dtype)
      labels = math_ops.cast(labels, dtypes.bool)
    if weights is not None:
      weights = weights_broadcast_ops.broadcast_weights(weights, predictions)
    return metrics_lib.auc(
        labels=labels, predictions=predictions, weights=weights, curve=curve,
        name=scope)
开发者ID:vaccine,项目名称:tensorflow,代码行数:11,代码来源:head.py


示例11: compute_weighted_loss

def compute_weighted_loss(losses,
                          sample_weight=None,
                          reduction=ReductionV2.SUM_OVER_BATCH_SIZE,
                          name=None):
  """Computes the weighted loss.

  Args:
    losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
    sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
      `losses`, or be broadcastable to `losses`.
    reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to loss.
      Default value is `SUM_OVER_BATCH_SIZE`.
    name: Optional name for the op.

  Raises:
    ValueError: If the shape of `sample_weight` is not compatible with `losses`.

  Returns:
    Weighted loss `Tensor` of the same type as `losses`. If `reduction` is
    `NONE`, this has the same shape as `losses`; otherwise, it is scalar.
  """
  ReductionV2.validate(reduction)
  if sample_weight is None:
    sample_weight = 1.0
  with ops.name_scope(name, 'weighted_loss', (losses, sample_weight)):
    # Update dimensions of `sample_weight` to match with `losses` if possible.
    losses, _, sample_weight = squeeze_or_expand_dimensions(
        losses, None, sample_weight)
    losses = ops.convert_to_tensor(losses)
    input_dtype = losses.dtype
    losses = math_ops.cast(losses, dtypes.float32)
    sample_weight = math_ops.cast(sample_weight, dtypes.float32)

    try:
      # Broadcast weights if possible.
      sample_weight = weights_broadcast_ops.broadcast_weights(
          sample_weight, losses)
    except ValueError:
      # Reduce values to same ndim as weight array.
      ndim = K.ndim(losses)
      weight_ndim = K.ndim(sample_weight)
      losses = K.mean(losses, axis=list(range(weight_ndim, ndim)))

    sample_weight.shape.assert_is_compatible_with(losses.shape)
    weighted_losses = math_ops.multiply(losses, sample_weight)
    # Apply reduction function to the individual weighted losses.
    loss = reduce_weighted_loss(weighted_losses, reduction)
    # Convert the result back to the input type.
    loss = math_ops.cast(loss, input_dtype)
    return loss
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:50,代码来源:losses_utils.py


示例12: weighted

  def weighted(y_true, y_pred, weights, mask=None):
    """Wrapper function.

    Arguments:
        y_true: `y_true` argument of `fn`.
        y_pred: `y_pred` argument of `fn`.
        weights: Weights tensor.
        mask: Mask tensor.

    Returns:
        Scalar tensor.
    """
    # score_array has ndim >= 2
    score_array = fn(y_true, y_pred)
    if mask is not None:
      mask = math_ops.cast(mask, y_pred.dtype)
      # Update weights with mask.
      if weights is None:
        weights = mask
      else:
        # Update dimensions of weights to match with mask if possible.
        mask, _, weights = squeeze_or_expand_dimensions(mask, None, weights)
        weights *= mask

    # Apply sample weighting.
    if weights is not None:

      # Update dimensions of weights to match with values if possible.
      score_array, _, weights = squeeze_or_expand_dimensions(
          score_array, None, weights)
      try:
        # Broadcast weights if possible.
        weights = weights_broadcast_ops.broadcast_weights(weights, score_array)
      except ValueError:
        # Reduce values to same ndim as weight array.
        ndim = K.ndim(score_array)
        weight_ndim = K.ndim(weights)
        score_array = K.mean(score_array, axis=list(range(weight_ndim, ndim)))

      score_array = math_ops.multiply(score_array, weights)
      score_array = math_ops.reduce_sum(score_array)
      weights = math_ops.reduce_sum(weights)
      score_array = math_ops.div_no_nan(score_array, weights)
    return K.mean(score_array)
开发者ID:aeverall,项目名称:tensorflow,代码行数:44,代码来源:training_utils.py


示例13: update_state

  def update_state(self, values, sample_weight=None):
    """Accumulates statistics for computing the mean.

    For example, if `values` is [1, 3, 5, 7] then the mean is 4. If
    the `sample_weight` is specified as [1, 1, 0, 0] then the mean would be 2.

    Args:
      values: Per-example value.
      sample_weight: Optional weighting of each example. Defaults to 1.

    Returns:
      Update op.
    """
    values = math_ops.cast(values, self._dtype)
    if sample_weight is None:
      num_values = math_ops.cast(array_ops.size(values), self._dtype)
    else:
      sample_weight = math_ops.cast(sample_weight, self._dtype)

      # Update dimensions of weights to match with values if possible.
      values, _, sample_weight = squeeze_or_expand_dimensions(
          values, None, sample_weight)
      try:
        # Broadcast weights if possible.
        sample_weight = weights_broadcast_ops.broadcast_weights(
            sample_weight, values)
      except ValueError:
        # Reduce values to same ndim as weight array
        ndim = K.ndim(values)
        weight_ndim = K.ndim(sample_weight)
        values = math_ops.reduce_mean(
            values, axis=list(range(weight_ndim, ndim)))

      num_values = math_ops.reduce_sum(sample_weight)
      values = math_ops.multiply(values, sample_weight)
    values = math_ops.reduce_sum(values)

    # Update state variables. Count should be updated only when total is
    # updated.
    update_total_op = state_ops.assign_add(self.total, values)
    with ops.control_dependencies([update_total_op]):
      update_count_op = state_ops.assign_add(self.count, num_values)
      return ops.convert_to_tensor(update_count_op)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:43,代码来源:metrics.py


示例14: _indicator_labels_mean

def _indicator_labels_mean(labels, weights=None, name=None):
  with ops.name_scope(name, 'labels_mean', (labels, weights)) as scope:
    labels = math_ops.to_float(labels, name='labels')
    if weights is not None:
      weights = weights_broadcast_ops.broadcast_weights(weights, labels)
    return metrics_lib.mean(labels, weights=weights, name=scope)
开发者ID:vaccine,项目名称:tensorflow,代码行数:6,代码来源:head.py


示例15: update_confusion_matrix_variables


#.........这里部分代码省略.........

  if not any(
      key for key in variables_to_update if key in list(ConfusionMatrix)):
    raise ValueError(
        'Please provide at least one valid confusion matrix '
        'variable to update. Valid variable key options are: "{}". '
        'Received: "{}"'.format(
            list(ConfusionMatrix), variables_to_update.keys()))

  invalid_keys = [
      key for key in variables_to_update if key not in list(ConfusionMatrix)
  ]
  if invalid_keys:
    raise ValueError(
        'Invalid keys: {}. Valid variable key options are: "{}"'.format(
            invalid_keys, list(ConfusionMatrix)))

  with ops.control_dependencies([
      check_ops.assert_greater_equal(
          y_pred,
          math_ops.cast(0.0, dtype=y_pred.dtype),
          message='predictions must be >= 0'),
      check_ops.assert_less_equal(
          y_pred,
          math_ops.cast(1.0, dtype=y_pred.dtype),
          message='predictions must be <= 1')
  ]):
    y_pred, y_true, sample_weight = squeeze_or_expand_dimensions(
        math_ops.cast(y_pred, dtype=dtypes.float32),
        math_ops.cast(y_true, dtype=dtypes.bool), sample_weight)

  if top_k is not None:
    y_pred = _filter_top_k(y_pred, top_k)
  if class_id is not None:
    y_true = y_true[..., class_id]
    y_pred = y_pred[..., class_id]

  thresholds = to_list(thresholds)
  num_thresholds = len(thresholds)
  num_predictions = array_ops.size(y_pred)

  # Reshape predictions and labels.
  predictions_2d = array_ops.reshape(y_pred, [1, -1])
  labels_2d = array_ops.reshape(
      math_ops.cast(y_true, dtype=dtypes.bool), [1, -1])

  # Tile the thresholds for every prediction.
  thresh_tiled = array_ops.tile(
      array_ops.expand_dims(array_ops.constant(thresholds), 1),
      array_ops.stack([1, num_predictions]))

  # Tile the predictions for every threshold.
  preds_tiled = array_ops.tile(predictions_2d, [num_thresholds, 1])

  # Compare predictions and threshold.
  pred_is_pos = math_ops.greater(preds_tiled, thresh_tiled)

  # Tile labels by number of thresholds
  label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1])

  if sample_weight is not None:
    weights = weights_broadcast_ops.broadcast_weights(
        math_ops.cast(sample_weight, dtype=dtypes.float32), y_pred)
    weights_tiled = array_ops.tile(
        array_ops.reshape(weights, [1, -1]), [num_thresholds, 1])
  else:
    weights_tiled = None

  update_ops = []

  def weighted_assign_add(label, pred, weights, var):
    label_and_pred = math_ops.cast(
        math_ops.logical_and(label, pred), dtype=dtypes.float32)
    if weights is not None:
      label_and_pred *= weights
    return state_ops.assign_add(var, math_ops.reduce_sum(label_and_pred, 1))

  loop_vars = {
      ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos),
  }
  update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update
  update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update
  update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update

  if update_fn or update_tn:
    pred_is_neg = math_ops.logical_not(pred_is_pos)
    loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg)

  if update_fp or update_tn:
    label_is_neg = math_ops.logical_not(label_is_pos)
    loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos)
    if update_tn:
      loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = (label_is_neg, pred_is_neg)

  for matrix_cond, (label, pred) in loop_vars.items():
    if matrix_cond in variables_to_update:
      update_ops.append(
          weighted_assign_add(label, pred, weights_tiled,
                              variables_to_update[matrix_cond]))
  return control_flow_ops.group(update_ops)
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:101,代码来源:metrics_utils.py



注:本文中的tensorflow.python.ops.weights_broadcast_ops.broadcast_weights函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python while_v2.while_loop_v2函数代码示例发布时间:2022-05-27
下一篇:
Python weights_broadcast_ops.assert_broadcastable函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap