本文整理汇总了Python中tensorflow.python.ops.variables.initialize_local_variables函数的典型用法代码示例。如果您正苦于以下问题:Python initialize_local_variables函数的具体用法?Python initialize_local_variables怎么用?Python initialize_local_variables使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了initialize_local_variables函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _get_local_init_op
def _get_local_init_op():
local_init_op = _get_first_op_from_collection(ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [variables.initialize_local_variables(), data_flow_ops.initialize_all_tables()]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
return local_init_op
开发者ID:jyegerlehner,项目名称:tensorflow,代码行数:8,代码来源:graph_actions.py
示例2: _export_graph
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.initialize_local_variables()
data_flow_ops.initialize_all_tables()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(init_op=control_flow_ops.group(
variables.initialize_local_variables(),
data_flow_ops.initialize_all_tables()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures)
export.export(export_dir, contrib_variables.get_global_step(), session,
exports_to_keep=exports_to_keep)
开发者ID:10imaging,项目名称:tensorflow,代码行数:18,代码来源:export.py
示例3: run
def run(self,
num_batches=None,
graph=None,
session=None,
start_queues=True,
initialize_variables=True,
**kwargs):
"""Builds and runs the columns of the `DataFrame` and yields batches.
This is a generator that yields a dictionary mapping column names to
evaluated columns.
Args:
num_batches: the maximum number of batches to produce. If none specified,
the returned value will iterate through infinite batches.
graph: the `Graph` in which the `DataFrame` should be built.
session: the `Session` in which to run the columns of the `DataFrame`.
start_queues: if true, queues will be started before running and halted
after producting `n` batches.
initialize_variables: if true, variables will be initialized.
**kwargs: Additional keyword arguments e.g. `num_epochs`.
Yields:
A dictionary, mapping column names to the values resulting from running
each column for a single batch.
"""
if graph is None:
graph = ops.get_default_graph()
with graph.as_default():
if session is None:
session = sess.Session()
self_built = self.build(**kwargs)
keys = list(self_built.keys())
cols = list(self_built.values())
if initialize_variables:
if variables.local_variables():
session.run(variables.initialize_local_variables())
if variables.all_variables():
session.run(variables.initialize_all_variables())
if start_queues:
coord = coordinator.Coordinator()
threads = qr.start_queue_runners(sess=session, coord=coord)
i = 0
while num_batches is None or i < num_batches:
i += 1
try:
values = session.run(cols)
yield collections.OrderedDict(zip(keys, values))
except errors.OutOfRangeError:
break
if start_queues:
coord.request_stop()
coord.join(threads)
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:53,代码来源:tensorflow_dataframe.py
示例4: _init_local_init_op
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT create an op based on the `LOCAL_INITIALIZERS` graph
collection.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [variables.initialize_local_variables(), data_flow_ops.initialize_all_tables()]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
开发者ID:kchodorow,项目名称:tensorflow,代码行数:16,代码来源:supervisor.py
示例5: run_feeds_iter
def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None):
"""Run `output_dict` tensors with each input in `feed_dicts`.
If `restore_checkpoint_path` is supplied, restore from checkpoint. Otherwise,
init all variables.
Args:
output_dict: A `dict` mapping string names to `Tensor` objects to run.
Tensors must all be from the same graph.
feed_dicts: Iterable of `dict` objects of input values to feed.
restore_checkpoint_path: A string containing the path to a checkpoint to
restore.
Yields:
A sequence of dicts of values read from `output_dict` tensors, one item
yielded for each item in `feed_dicts`. Keys are the same as `output_dict`,
values are the results read from the corresponding `Tensor` in
`output_dict`.
Raises:
ValueError: if `output_dict` or `feed_dicts` is None or empty.
"""
if not output_dict:
raise ValueError('output_dict is invalid: %s.' % output_dict)
if not feed_dicts:
raise ValueError('feed_dicts is invalid: %s.' % feed_dicts)
graph = contrib_ops.get_graph_from_inputs(output_dict.values())
with graph.as_default() as g:
with tf_session.Session('') as session:
if restore_checkpoint_path:
_restore_from_checkpoint(session, g, restore_checkpoint_path)
else:
session.run(variables.initialize_all_variables())
session.run(variables.initialize_local_variables())
session.run(data_flow_ops.initialize_all_tables())
coord = coordinator.Coordinator()
threads = None
try:
threads = queue_runner.start_queue_runners(session, coord=coord)
for f in feed_dicts:
yield session.run(output_dict, f)
finally:
coord.request_stop()
if threads:
coord.join(threads, stop_grace_period_secs=120)
开发者ID:2020zyc,项目名称:tensorflow,代码行数:47,代码来源:graph_actions.py
示例6: _init_local_init_op
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
collection. If the collection is empty, create an op that initializes
all local variables and all tables.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [variables.initialize_local_variables(), data_flow_ops.initialize_all_tables()]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
开发者ID:paolodedios,项目名称:tensorflow,代码行数:17,代码来源:supervisor.py
示例7: _default_local_init_op
def _default_local_init_op():
return control_flow_ops.group(variables.initialize_local_variables(),
data_flow_ops.initialize_all_tables())
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:3,代码来源:monitored_session.py
示例8: evaluation_loop
def evaluation_loop(master,
checkpoint_dir,
logdir,
num_evals=1,
eval_op=None,
eval_op_feed_dict=None,
final_op=None,
final_op_feed_dict=None,
summary_op=_USE_DEFAULT,
summary_op_feed_dict=None,
variables_to_restore=None,
eval_interval_secs=60,
max_number_of_evaluations=None):
"""Runs TF-Slim's Evaluation Loop.
Args:
master: The BNS address of the TensorFlow master.
checkpoint_dir: The directory where checkpoints are stored.
logdir: The directory where the TensorFlow summaries are written to.
num_evals: The number of times to run `eval_op`.
eval_op: A operation run `num_evals` times.
eval_op_feed_dict: The feed dictionary to use when executing the `eval_op`.
final_op: An operation to execute after all of the `eval_op` executions. The
value of `final_op` is returned.
final_op_feed_dict: A feed dictionary to use when executing `final_op`.
summary_op: The summary_op to evaluate after running TF-Slims metric ops. By
default the summary_op is set to tf.merge_all_summaries().
summary_op_feed_dict: An optional feed dictionary to use when running the
`summary_op`.
variables_to_restore: A list of TensorFlow variables to restore during
evaluation. If the argument is left as `None` then
slim.variables.GetVariablesToRestore() is used.
eval_interval_secs: The minimum number of seconds between evaluations.
max_number_of_evaluations: the max number of iterations of the evaluation.
If the value is left as 'None', the evaluation continues indefinitely.
"""
if summary_op == _USE_DEFAULT:
summary_op = logging_ops.merge_all_summaries()
global_step = variables.get_or_create_global_step()
init_op = control_flow_ops.group(tf_variables.initialize_all_variables(),
tf_variables.initialize_local_variables(),
data_flow_ops.initialize_all_tables())
saver = tf_saver.Saver(variables_to_restore or
variables.get_variables_to_restore())
summary_writer = summary_io.SummaryWriter(logdir)
sv = supervisor.Supervisor(graph=ops.get_default_graph(),
logdir=logdir,
init_op=init_op,
summary_op=None,
summary_writer=None,
global_step=None,
saver=saver)
last_checkpoint = None
number_of_evaluations = 0
while True:
last_checkpoint = wait_for_new_checkpoint(checkpoint_dir, last_checkpoint)
start = time.time()
logging.info('Starting evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
with sv.managed_session(master, start_standard_services=False) as sess:
sv.saver.restore(sess, last_checkpoint)
sv.start_queue_runners(sess)
evaluation(sess,
num_evals=num_evals,
eval_op=eval_op,
eval_op_feed_dict=eval_op_feed_dict,
final_op=final_op,
final_op_feed_dict=final_op_feed_dict,
summary_op=summary_op,
summary_op_feed_dict=summary_op_feed_dict,
summary_writer=summary_writer,
global_step=global_step)
logging.info('Finished evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
number_of_evaluations += 1
if (max_number_of_evaluations and
number_of_evaluations >= max_number_of_evaluations):
logging.info('Reached max_number_of_evaluations=%s. Exit',
max_number_of_evaluations)
break
time_to_next_eval = start + eval_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
开发者ID:363158858,项目名称:tensorflow,代码行数:92,代码来源:evaluation.py
示例9: train
def train(
train_op,
logdir,
log_every_n_steps=1,
graph=None,
master='',
is_chief=True,
global_step=None,
number_of_steps=None,
init_op=_USE_DEFAULT,
init_feed_dict=None,
init_fn=None,
summary_op=_USE_DEFAULT,
save_summaries_secs=600,
startup_delay_steps=0,
saver=None,
save_interval_secs=600,
sync_optimizer=None):
"""Runs a training loop using a TensorFlow supervisor.
When the sync_optimizer is supplied, gradient updates are applied
synchronously. Otherwise, gradient updates are applied asynchronous.
Args:
train_op: A `Tensor` that, when executed, will apply the gradients and
return the loss value.
logdir: the directory where training logs are written to.
log_every_n_steps: The frequency, in terms of global steps, that the loss
and global step and logged.
graph: The graph to pass to the supervisor. If no graph is supplied the
default graph is used.
master: The BNS name of the tensorflow master.
is_chief: Specifies whether or not the training is being run by the primary
replica during replica training.
global_step: The `Tensor` representing the global step. If left as `None`,
then slim.variables.get_or_create_global_step() is used.
number_of_steps: The max number of gradient steps to take during training.
If the value is left as None, training proceeds indefinitely.
init_op: The initialization operation.
init_feed_dict: A feed dictionary to use when executing the `init_op`.
init_fn: An optional callable to be executed after `init_op` is called. The
callable must accept one argument, the session being initialized.
summary_op: The summary operation.
save_summaries_secs: How often, in seconds, to save summaries.
startup_delay_steps: The number of steps to wait for before beginning. Note
that this must be 0 if a sync_optimizer is supplied.
saver: Saver to save checkpoints. If none, a default one will be created
and used.
save_interval_secs: How often, in seconds, to save the model to `logdir`.
sync_optimizer: an instance of tf.train.SyncReplicasOptimizer. If the
argument is supplied, gradient updates will be synchronous. If left as
`None`, gradient updates will be asynchronous.
Returns:
the value of the loss function after training.
Raises:
ValueError: if `train_op` is empty or if `startup_delay_steps` is
non-zero when `sync_optimizer` is supplied, or if `number_of_steps` is
negative.
"""
if train_op is None:
raise ValueError('train_op cannot be None.')
if sync_optimizer and startup_delay_steps > 0:
raise ValueError(
'startup_delay_steps must be zero when sync_optimizer is supplied.')
if number_of_steps is not None and number_of_steps <= 0:
raise ValueError(
'`number_of_steps` must be either None or a positive number.')
graph = graph or ops.get_default_graph()
if global_step is None:
global_step = variables.get_or_create_global_step()
saver = saver or tf_saver.Saver()
if init_op is None:
init_op = control_flow_ops.group(
tf_variables.initialize_all_variables(),
tf_variables.initialize_local_variables(),
tf_variables.initialize_all_tables())
if summary_op == _USE_DEFAULT:
summary_op = logging_ops.merge_all_summaries()
local_init_op = None
cleanup_op = None
if is_chief and sync_optimizer:
if not isinstance(sync_optimizer,
sync_replicas_optimizer.SyncReplicasOptimizer):
raise ValueError(
'`sync_optimizer` must be a tf.train.SyncReplicasOptimizer')
# Need to create these BEFORE the supervisor finalizes the graph:
local_init_op = sync_optimizer.get_init_tokens_op()
chief_queue_runner = sync_optimizer.get_chief_queue_runner()
cleanup_op = sync_optimizer.get_clean_up_op()
#.........这里部分代码省略.........
开发者ID:343829084,项目名称:tensorflow,代码行数:101,代码来源:learning.py
示例10: train
def train(train_op,
logdir,
train_step_fn=train_step,
train_step_kwargs=_USE_DEFAULT,
log_every_n_steps=1,
graph=None,
master='',
is_chief=True,
global_step=None,
number_of_steps=None,
init_op=_USE_DEFAULT,
init_feed_dict=None,
local_init_op=_USE_DEFAULT,
init_fn=None,
ready_op=_USE_DEFAULT,
summary_op=_USE_DEFAULT,
save_summaries_secs=600,
summary_writer=_USE_DEFAULT,
startup_delay_steps=0,
saver=None,
save_interval_secs=600,
sync_optimizer=None,
session_config=None):
"""Runs a training loop using a TensorFlow supervisor.
When the sync_optimizer is supplied, gradient updates are applied
synchronously. Otherwise, gradient updates are applied asynchronous.
Args:
train_op: A `Tensor` that, when executed, will apply the gradients and
return the loss value.
logdir: The directory where training logs are written to. If None, model
checkpoints and summaries will not be written.
train_step_fn: The function to call in order to execute a single gradient
step. The function must have take exactly four arguments: the current
session, the `train_op` `Tensor`, a global step `Tensor` and a dictionary.
train_step_kwargs: A dictionary which is passed to the `train_step_fn`. By
default, two `Boolean`, scalar ops called "should_stop" and "should_log"
are provided.
log_every_n_steps: The frequency, in terms of global steps, that the loss
and global step and logged.
graph: The graph to pass to the supervisor. If no graph is supplied the
default graph is used.
master: The BNS name of the tensorflow master.
is_chief: Specifies whether or not the training is being run by the primary
replica during replica training.
global_step: The `Tensor` representing the global step. If left as `None`,
then slim.variables.get_or_create_global_step() is used.
number_of_steps: The max number of gradient steps to take during training.
If the value is left as None, training proceeds indefinitely.
init_op: The initialization operation. If left to its default value, then
the session is initialized by calling `tf.initialize_all_variables()`.
init_feed_dict: A feed dictionary to use when executing the `init_op`.
local_init_op: The local initialization operation. If left to its default
value, then the session is initialized by calling
`tf.initialize_local_variables()` and `tf.initialize_all_tables()`.
init_fn: An optional callable to be executed after `init_op` is called. The
callable must accept one argument, the session being initialized.
ready_op: Operation to check if the model is ready to use. If left to its
default value, then the session checks for readiness by calling
`tf.report_uninitialized_variables()`.
summary_op: The summary operation.
save_summaries_secs: How often, in seconds, to save summaries.
summary_writer: `SummaryWriter` to use. Can be `None`
to indicate that no summaries should be written. If unset, we
create a SummaryWriter.
startup_delay_steps: The number of steps to wait for before beginning. Note
that this must be 0 if a sync_optimizer is supplied.
saver: Saver to save checkpoints. If None, a default one will be created
and used.
save_interval_secs: How often, in seconds, to save the model to `logdir`.
sync_optimizer: an instance of tf.train.SyncReplicasOptimizer. If the
argument is supplied, gradient updates will be synchronous. If left as
`None`, gradient updates will be asynchronous.
session_config: An instance of `tf.ConfigProto` that will be used to
configure the `Session`. If left as `None`, the default will be used.
Returns:
the value of the loss function after training.
Raises:
ValueError: if `train_op` is empty or if `startup_delay_steps` is
non-zero when `sync_optimizer` is supplied, or if `number_of_steps` is
negative.
"""
if train_op is None:
raise ValueError('train_op cannot be None.')
if logdir is None:
if summary_op != _USE_DEFAULT:
raise ValueError('Cannot provide summary_op because logdir=None')
if saver is not None:
raise ValueError('Cannot provide saver because logdir=None')
if sync_optimizer and startup_delay_steps > 0:
raise ValueError(
'startup_delay_steps must be zero when sync_optimizer is supplied.')
if number_of_steps is not None and number_of_steps <= 0:
raise ValueError(
#.........这里部分代码省略.........
开发者ID:abhishekns,项目名称:tensorflow,代码行数:101,代码来源:learning.py
示例11: evaluate_once
def evaluate_once(checkpoint_path,
logdir,
master='',
num_evals=1,
eval_op=None,
eval_op_feed_dict=None,
final_op=None,
final_op_feed_dict=None,
summary_op=_USE_DEFAULT,
summary_op_feed_dict=None,
variables_to_restore=None,
session_config=None):
"""Evaluates the model at the given checkpoint path.
Args:
checkpoint_path: The path to a checkpoint to use for evaluation.
logdir: The directory where the TensorFlow summaries are written to.
master: The BNS address of the TensorFlow master.
num_evals: The number of times to run `eval_op`.
eval_op: A operation run `num_evals` times.
eval_op_feed_dict: The feed dictionary to use when executing the `eval_op`.
final_op: An operation to execute after all of the `eval_op` executions. The
value of `final_op` is returned.
final_op_feed_dict: A feed dictionary to use when executing `final_op`.
summary_op: The summary_op to evaluate after running TF-Slims metric ops. By
default the summary_op is set to tf.merge_all_summaries().
summary_op_feed_dict: An optional feed dictionary to use when running the
`summary_op`.
variables_to_restore: A list of TensorFlow variables to restore during
evaluation. If the argument is left as `None` then
slim.variables.GetVariablesToRestore() is used.
session_config: An instance of `tf.ConfigProto` that will be used to
configure the `Session`. If left as `None`, the default will be used.
Returns:
The value of `final_op` or `None` if `final_op` is `None`.
"""
if summary_op == _USE_DEFAULT:
summary_op = logging_ops.merge_all_summaries()
global_step = variables.get_or_create_global_step()
init_op = control_flow_ops.group(tf_variables.initialize_all_variables(),
tf_variables.initialize_local_variables(),
data_flow_ops.initialize_all_tables())
saver = tf_saver.Saver(variables_to_restore or
variables.get_variables_to_restore())
summary_writer = summary_io.SummaryWriter(logdir)
sv = supervisor.Supervisor(graph=ops.get_default_graph(),
logdir=logdir,
init_op=init_op,
summary_op=None,
summary_writer=None,
global_step=None,
saver=None)
logging.info('Starting evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
with sv.managed_session(
master, start_standard_services=False, config=session_config) as sess:
saver.restore(sess, checkpoint_path)
sv.start_queue_runners(sess)
final_op_value = evaluation(sess,
num_evals=num_evals,
eval_op=eval_op,
eval_op_feed_dict=eval_op_feed_dict,
final_op=final_op,
final_op_feed_dict=final_op_feed_dict,
summary_op=summary_op,
summary_op_feed_dict=summary_op_feed_dict,
summary_writer=summary_writer,
global_step=global_step)
logging.info('Finished evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
return final_op_value
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:80,代码来源:evaluation.py
注:本文中的tensorflow.python.ops.variables.initialize_local_variables函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论