本文整理汇总了Python中tensorflow.python.ops.variables.global_variables函数的典型用法代码示例。如果您正苦于以下问题:Python global_variables函数的具体用法?Python global_variables怎么用?Python global_variables使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了global_variables函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testReuse
def testReuse(self):
def f(x):
return core_layers.dense(x, self.CHANNELS // 2)
def g(x):
return core_layers.dense(x, self.CHANNELS // 2)
x = random_ops.random_uniform(
[self.BATCH_SIZE, self.CHANNELS], dtype=dtypes.float32)
x1, x2 = array_ops.split(x, 2, axis=-1)
with variable_scope.variable_scope("test"):
y1, y2 = rev_block_lib.rev_block(x1, x2, f, g, num_layers=self.NUM_LAYERS)
num_vars_before = len(variables.global_variables())
with variable_scope.variable_scope("test", reuse=True):
y1, y2 = rev_block_lib.rev_block(x1, x2, f, g, num_layers=self.NUM_LAYERS)
num_vars_after = len(variables.global_variables())
self.assertEqual(num_vars_before, num_vars_after)
loss = math_ops.reduce_mean(y1 + y2)
_ = gradients_impl.gradients(loss,
[x] + variables.trainable_variables())
with variable_scope.variable_scope("test", reuse=True):
y1, y2 = rev_block_lib.rev_block(x1, x2, f, g, num_layers=self.NUM_LAYERS)
num_vars_after = len(variables.global_variables())
self.assertEqual(num_vars_before, num_vars_after)
开发者ID:clsung,项目名称:tensorflow,代码行数:32,代码来源:rev_block_lib_test.py
示例2: testFunctionalReuseFromScope
def testFunctionalReuseFromScope(self):
inputs = variables.Variable(
np.random.random((5, 4, 3, 6)), dtype=dtypes.float32)
epsilon = 1e-3
training = array_ops.placeholder(dtype='bool')
with variable_scope.variable_scope('scope'):
_ = normalization_layers.batch_norm(
inputs, axis=-1, momentum=0.9, epsilon=epsilon, training=training)
self.assertEqual(len(variables.global_variables()), 5)
with variable_scope.variable_scope('scope', reuse=True):
_ = normalization_layers.batch_norm(
inputs, axis=-1, momentum=0.9, epsilon=epsilon, training=training)
self.assertEqual(len(variables.global_variables()), 5)
开发者ID:adityaatluri,项目名称:tensorflow,代码行数:13,代码来源:normalization_test.py
示例3: testCollectionsWithScope
def testCollectionsWithScope(self):
with self.cached_session():
with ops.name_scope("scope_1"):
var_x = variables.VariableV1(2.0)
with ops.name_scope("scope_2"):
var_y = variables.VariableV1(2.0)
self.assertEqual([var_x, var_y], variables.global_variables())
self.assertEqual([var_x], variables.global_variables("scope_1"))
self.assertEqual([var_y], variables.global_variables("scope_2"))
self.assertEqual([var_x, var_y], variables.trainable_variables())
self.assertEqual([var_x], variables.trainable_variables("scope_1"))
self.assertEqual([var_y], variables.trainable_variables("scope_2"))
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:14,代码来源:variables_test.py
示例4: testNotInLocalVariables
def testNotInLocalVariables(self):
with self.test_session():
with variable_scope.variable_scope('A'):
a = variables_lib2.model_variable('a', [5])
self.assertTrue(a in variables_lib.global_variables())
self.assertTrue(a in ops.get_collection(ops.GraphKeys.MODEL_VARIABLES))
self.assertFalse(a in variables_lib.local_variables())
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:7,代码来源:variables_test.py
示例5: testPrepareSessionWithReadyForLocalInitOp
def testPrepareSessionWithReadyForLocalInitOp(self):
with ops.Graph().as_default():
v = variables.Variable(1, name="v")
w = variables.Variable(
v,
trainable=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES],
name="w")
with self.test_session():
self.assertEqual(False, variables.is_variable_initialized(v).eval())
self.assertEqual(False, variables.is_variable_initialized(w).eval())
sm2 = session_manager.SessionManager(
ready_op=variables.report_uninitialized_variables(),
ready_for_local_init_op=variables.report_uninitialized_variables(
variables.global_variables()),
local_init_op=w.initializer)
sess = sm2.prepare_session("", init_op=v.initializer)
self.assertEqual(
True,
variables.is_variable_initialized(
sess.graph.get_tensor_by_name("v:0")).eval(session=sess))
self.assertEqual(
True,
variables.is_variable_initialized(
sess.graph.get_tensor_by_name("w:0")).eval(session=sess))
self.assertEquals(1, sess.run(v))
self.assertEquals(1, sess.run(w))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:27,代码来源:session_manager_test.py
示例6: testStochasticVariablesWithConstantInitializer
def testStochasticVariablesWithConstantInitializer(self):
shape = (10, 20)
with variable_scope.variable_scope(
"stochastic_variables",
custom_getter=sv.make_stochastic_variable_getter(
dist_cls=dist.NormalWithSoftplusSigma,
dist_kwargs={"validate_args": True},
param_initializers={
"mu": np.ones(shape) * 4.,
"sigma": np.ones(shape) * 2.
})):
v = variable_scope.get_variable("sv")
for var in variables.global_variables():
if "mu" in var.name:
mu_var = var
if "sigma" in var.name:
sigma_var = var
v = ops.convert_to_tensor(v)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllEqual(np.ones(shape) * 4., sess.run(mu_var))
self.assertAllEqual(np.ones(shape) * 2., sess.run(sigma_var))
self.assertEqual(shape, sess.run(v).shape)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:25,代码来源:stochastic_variables_test.py
示例7: testWaitForSessionLocalInit
def testWaitForSessionLocalInit(self):
server = server_lib.Server.create_local_server()
with ops.Graph().as_default() as graph:
v = variables.Variable(1, name="v")
w = variables.Variable(
v,
trainable=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES],
name="w")
sm = session_manager.SessionManager(
graph=graph,
ready_op=variables.report_uninitialized_variables(),
ready_for_local_init_op=variables.report_uninitialized_variables(
variables.global_variables()),
local_init_op=w.initializer)
# Initialize v but not w
s = session_lib.Session(server.target, graph=graph)
s.run(v.initializer)
sess = sm.wait_for_session(server.target, max_wait_secs=3)
self.assertEqual(
True,
variables.is_variable_initialized(
sess.graph.get_tensor_by_name("v:0")).eval(session=sess))
self.assertEqual(
True,
variables.is_variable_initialized(
sess.graph.get_tensor_by_name("w:0")).eval(session=sess))
self.assertEquals(1, sess.run(v))
self.assertEquals(1, sess.run(w))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:31,代码来源:session_manager_test.py
示例8: test_gradients_are_computed_with_mean_reduction
def test_gradients_are_computed_with_mean_reduction(self):
with self.test_session() as session:
tower_specs = replicate_model_fn._get_loss_towers(
self.model_fn,
mode=model_fn_lib.ModeKeys.EVAL,
features=[[0.6], [1.6]],
labels=[[0.6], [0.6]],
params=None,
loss_reduction=losses.Reduction.MEAN,
config=None,
devices=['/gpu:0', '/gpu:1'],
local_ps_devices=['/gpu:0'],
name_scope_pattern='test_tower_{}')
session.run(variables.global_variables_initializer())
self.assertEqual(len(tower_specs), 2)
self.assertEqual('/device:GPU:0', tower_specs[0].loss.device)
self.assertEqual('averaged_loss:0', tower_specs[0].loss.name)
self.assertEqual(0.5, session.run(tower_specs[0].loss))
self.assertEqual('/device:GPU:1', tower_specs[1].loss.device)
self.assertEqual('test_tower_1/averaged_loss:0', tower_specs[1].loss.name)
# The input batch for the second tower had a loss that is 1.0
# bigger: 0.6 vs 1.6.
self.assertEqual(1.0, session.run(tower_specs[1].loss))
self.assertEqual(1, len(variables.global_variables()))
self.assertEqual(1, len(variables.trainable_variables()))
with variable_scope.variable_scope('', reuse=True):
c = variable_scope.get_variable('c', dtype=dtypes.float64)
self.assertEqual(0.25, session.run(c))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:33,代码来源:replicate_model_fn_test.py
示例9: _get_saver
def _get_saver():
"""Lazy init and return saver."""
saver = _get_first_op_from_collection(ops.GraphKeys.SAVERS)
if saver is None and variables.global_variables():
saver = tf_saver.Saver()
ops.add_to_collection(ops.GraphKeys.SAVERS, saver)
return saver
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:7,代码来源:graph_actions.py
示例10: testAverages
def testAverages(self):
with self.test_session() as session:
scale = 2.
grad = array_ops.ones([3, 4]) * scale
log_norm = np.log(np.sqrt(scale**2 * grad.get_shape().num_elements()))
grads_and_vars = [(grad, grad)]
grads_and_vars = optimizers_lib.adaptive_clipping_fn(
decay=0.5)(grads_and_vars)
var_dict = {}
for var in variables.global_variables():
if var.name.startswith("AdaptiveMaxNorm"):
var_dict[var.name.split(":")[0]] = var
self.assertEqual(2, len(var_dict))
moving_mean = var_dict["AdaptiveMaxNorm/mean"]
moving_sq_mean = var_dict["AdaptiveMaxNorm/sq_mean"]
variables.global_variables_initializer().run()
mean, sq_mean = session.run([moving_mean, moving_sq_mean])
self.assertEqual([0], mean)
self.assertEqual([0], sq_mean)
for i in range(20):
mean, sq_mean, _ = session.run(
[moving_mean, moving_sq_mean, grads_and_vars[0][0]])
if i == 0:
self.assertLess(mean, 0.9 * log_norm)
self.assertLess(sq_mean, 0.9 * log_norm**2)
self.assertAlmostEqual(float(mean), log_norm, places=4)
self.assertAlmostEqual(float(sq_mean), log_norm**2, places=4)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:29,代码来源:optimizers_test.py
示例11: testVariableReuse
def testVariableReuse(self):
def LinearWithReuse(input_tensor, reuse=None):
size = input_tensor.shape.dims[1]
with variable_scope.variable_scope("linear", reuse=reuse):
w = variable_scope.get_variable(
"w", shape=[size, size], dtype=input_tensor.dtype)
return math_ops.matmul(input_tensor, w)
@function.Defun(dtypes.float32)
def Foo(inputs):
inputs = array_ops.reshape(inputs, [32, 100])
hidden = LinearWithReuse(inputs)
return LinearWithReuse(hidden, reuse=True)
input_op = array_ops.placeholder(shape=[32, 100], dtype=dtypes.float32)
output_op = Foo(input_op)
global_vars = variables.global_variables()
self.assertEqual(len(global_vars), 1)
self.assertEqual(global_vars[0].name, "linear/w:0")
with session.Session() as sess:
sess.run(variables.global_variables_initializer())
output_val = sess.run(
output_op, feed_dict={input_op: np.random.rand(32, 100)})
self.assertEqual(output_val.shape, (32, 100))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:27,代码来源:function_test.py
示例12: testStochasticVariablesWithCallableInitializer
def testStochasticVariablesWithCallableInitializer(self):
shape = (10, 20)
def sigma_init(shape, dtype, partition_info):
_ = partition_info
return array_ops.ones(shape, dtype=dtype) * 2.
with variable_scope.variable_scope(
"stochastic_variables",
custom_getter=sv.make_stochastic_variable_getter(
dist_cls=dist.NormalWithSoftplusScale,
dist_kwargs={"validate_args": True},
param_initializers={
"loc": np.ones(
shape, dtype=np.float32) * 4.,
"scale": sigma_init
})):
v = variable_scope.get_variable("sv", shape)
for var in variables.global_variables():
if "loc" in var.name:
mu_var = var
if "scale" in var.name:
sigma_var = var
v = ops.convert_to_tensor(v)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllEqual(np.ones(shape) * 4., sess.run(mu_var))
self.assertAllEqual(np.ones(shape) * 2., sess.run(sigma_var))
self.assertEqual(shape, sess.run(v).shape)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:31,代码来源:stochastic_variables_test.py
示例13: testFunctionCallInDifferentVariableScopes
def testFunctionCallInDifferentVariableScopes(self):
@function.Defun(dtypes.float32)
def Foo(inputs):
var = variable_scope.get_variable(
"var",
shape=[10],
dtype=dtypes.float32,
initializer=init_ops.ones_initializer())
return inputs + var
input_op = array_ops.placeholder(shape=[10], dtype=dtypes.float32)
with variable_scope.variable_scope("vs1"):
out1_op = Foo(input_op)
with variable_scope.variable_scope("vs2"):
out2_op = Foo(input_op)
global_vars = variables.global_variables()
self.assertEqual(len(global_vars), 1)
self.assertEqual(global_vars[0].name, "vs1/var:0")
with session.Session() as sess:
sess.run(variables.global_variables_initializer())
out1, out2 = sess.run(
[out1_op, out2_op], feed_dict={input_op: np.linspace(1, 10, 10)})
self.assertAllEqual(out1, np.linspace(2, 11, 10))
self.assertAllEqual(out2, np.linspace(2, 11, 10))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:28,代码来源:function_test.py
示例14: add_meta_graph
def add_meta_graph(self,
tags,
signature_def_map=None,
assets_collection=None,
legacy_init_op=None,
clear_devices=False,
main_op=None):
"""Adds the current meta graph to the SavedModel.
Creates a Saver in the current scope and uses the Saver to export the meta
graph def. Invoking this API requires the `add_meta_graph_and_variables()`
API to have been invoked before.
Args:
tags: The set of tags to annotate the meta graph def with.
signature_def_map: The map of signature defs to be added to the meta graph
def.
assets_collection: Assets collection to be saved with SavedModel. Note
that this collection should be a subset of the assets saved as part of
the first meta graph in the SavedModel.
legacy_init_op: Legacy support for op or group of ops to execute after the
restore op upon a load.
clear_devices: Set to true if the device info on the default graph should
be cleared.
main_op: Op or group of ops to execute when the graph is loaded.
Raises:
AssertionError: If the variables for the SavedModel have not been saved
yet.
"""
if not self._has_saved_variables:
raise AssertionError(
"Graph state including variables and assets has not been saved yet. "
"Please invoke `add_meta_graph_and_variables()` first.")
# Validate the signature def map to ensure all included TensorInfos are
# properly populated.
self._validate_signature_def_map(signature_def_map)
# Save asset files and write them to disk, if any.
self._save_and_write_assets(assets_collection)
if main_op is None:
# Add legacy init op to the SavedModel.
self._maybe_add_legacy_init_op(legacy_init_op)
else:
self._add_main_op(main_op)
# Initialize a saver to generate a sharded output for all variables in the
# current scope.
saver = tf_saver.Saver(
variables.global_variables(),
sharded=True,
write_version=saver_pb2.SaverDef.V2,
allow_empty=True)
meta_graph_def = saver.export_meta_graph(clear_devices=clear_devices)
# Tag the meta graph def and add it to the SavedModel.
self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:60,代码来源:builder_impl.py
示例15: testBasicLSTMCell
def testBasicLSTMCell(self):
for dtype in [dtypes.float16, dtypes.float32]:
np_dtype = dtype.as_numpy_dtype
with self.test_session(graph=ops.Graph()) as sess:
with variable_scope.variable_scope(
"root", initializer=init_ops.constant_initializer(0.5)):
x = array_ops.zeros([1, 2], dtype=dtype)
m = array_ops.zeros([1, 8], dtype=dtype)
cell = rnn_cell_impl.MultiRNNCell(
[
rnn_cell_impl.BasicLSTMCell(2, state_is_tuple=False)
for _ in range(2)
],
state_is_tuple=False)
self.assertEqual(cell.dtype, None)
g, out_m = cell(x, m)
# Layer infers the input type.
self.assertEqual(cell.dtype, dtype.name)
expected_variable_names = [
"root/multi_rnn_cell/cell_0/basic_lstm_cell/%s:0" %
rnn_cell_impl._WEIGHTS_VARIABLE_NAME,
"root/multi_rnn_cell/cell_0/basic_lstm_cell/%s:0" %
rnn_cell_impl._BIAS_VARIABLE_NAME,
"root/multi_rnn_cell/cell_1/basic_lstm_cell/%s:0" %
rnn_cell_impl._WEIGHTS_VARIABLE_NAME,
"root/multi_rnn_cell/cell_1/basic_lstm_cell/%s:0" %
rnn_cell_impl._BIAS_VARIABLE_NAME
]
self.assertEqual(expected_variable_names,
[v.name for v in cell.trainable_variables])
self.assertFalse(cell.non_trainable_variables)
sess.run([variables_lib.global_variables_initializer()])
res = sess.run([g, out_m], {
x.name: np.array([[1., 1.]]),
m.name: 0.1 * np.ones([1, 8])
})
self.assertEqual(len(res), 2)
variables = variables_lib.global_variables()
self.assertEqual(expected_variable_names, [v.name for v in variables])
# The numbers in results were not calculated, this is just a
# smoke test.
self.assertAllClose(res[0], np.array(
[[0.240, 0.240]], dtype=np_dtype), 1e-2)
expected_mem = np.array(
[[0.689, 0.689, 0.448, 0.448, 0.398, 0.398, 0.240, 0.240]],
dtype=np_dtype)
self.assertAllClose(res[1], expected_mem, 1e-2)
with variable_scope.variable_scope(
"other", initializer=init_ops.constant_initializer(0.5)):
# Test BasicLSTMCell with input_size != num_units.
x = array_ops.zeros([1, 3], dtype=dtype)
m = array_ops.zeros([1, 4], dtype=dtype)
g, out_m = rnn_cell_impl.BasicLSTMCell(2, state_is_tuple=False)(x, m)
sess.run([variables_lib.global_variables_initializer()])
res = sess.run(
[g, out_m], {
x.name: np.array([[1., 1., 1.]], dtype=np_dtype),
m.name: 0.1 * np.ones([1, 4], dtype=np_dtype)
})
self.assertEqual(len(res), 2)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:60,代码来源:core_rnn_cell_test.py
示例16: add_variable
def add_variable(self, name, shape, dtype=None,
initializer=None, regularizer=None, trainable=True):
"""Adds a new variable to the layer, or gets an existing one; returns it.
Arguments:
name: variable name.
shape: variable shape.
dtype: The type of the variable. Defaults to `self.dtype`.
initializer: initializer instance (callable).
regularizer: regularizer instance (callable).
trainable: whether the variable should be part of the layer's
"trainable_variables" (e.g. variables, biases)
or "non_trainable_variables" (e.g. BatchNorm mean, stddev).
Returns:
The created variable.
"""
if dtype is None:
dtype = self.dtype
existing_variables = set(tf_variables.global_variables())
self._set_scope(None)
with vs.variable_scope(self._scope,
reuse=self.built or self._reuse) as scope:
with ops.name_scope(scope.original_name_scope):
variable = vs.get_variable(name,
shape=shape,
initializer=initializer,
dtype=dtypes.as_dtype(dtype),
trainable=trainable and self.trainable)
if variable in existing_variables:
return variable
if regularizer:
# To match the behavior of tf.get_variable(), we only
# apply regularization if the variable is newly created.
if isinstance(variable, tf_variables.PartitionedVariable):
for v in variable:
with ops.colocate_with(v.op):
with ops.name_scope(name + '/Regularizer'):
regularization = regularizer(v)
if regularization is not None:
self.add_loss(regularization)
_add_elements_to_collection(
regularization, ops.GraphKeys.REGULARIZATION_LOSSES)
else:
with ops.colocate_with(variable.op):
with ops.name_scope(name + '/Regularizer'):
regularization = regularizer(variable)
if regularization is not None:
self.add_loss(regularization)
_add_elements_to_collection(
regularization, ops.GraphKeys.REGULARIZATION_LOSSES)
if trainable:
self._trainable_weights.append(variable)
else:
self._non_trainable_weights.append(variable)
return variable
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:58,代码来源:base.py
示例17: _add_variable
def _add_variable(
self,
name,
shape,
dtype=None,
initializer=None,
regularizer=None,
trainable=True,
variable_getter=vs.get_variable,
):
"""Adds a new variable to the layer.
Arguments:
name: variable name.
shape: variable shape.
dtype: The type of the variable. Defaults to `self.dtype`.
initializer: initializer instance (callable).
regularizer: regularizer instance (callable).
trainable: whether the variable should be part of the layer's
"trainable_variables" (e.g. variables, biases)
or "non_trainable_variables" (e.g. BatchNorm mean, stddev).
variable_getter: The getter to use for TensorFlow variables.
Returns:
The created variable.
"""
if dtype is None:
dtype = self.dtype
existing_variables = set(tf_variables.global_variables())
variable = variable_getter(
name, shape=shape, initializer=initializer, dtype=dtype, trainable=trainable and self.trainable
)
# TODO(sguada) fix name = variable.op.name
if regularizer:
if not self._reuse and variable not in existing_variables:
# To match the behavior of tf.get_variable(), we only
# apply regularization if the variable is newly created.
if isinstance(variable, tf_variables.PartitionedVariable):
for v in variable:
with ops.colocate_with(v.op):
with ops.name_scope(name + "/Regularizer"):
regularization = regularizer(v)
if regularization is not None:
self._losses.append(regularization)
_add_elements_to_collection(regularization, ops.GraphKeys.REGULARIZATION_LOSSES)
else:
with ops.colocate_with(variable.op):
with ops.name_scope(name + "/Regularizer"):
regularization = regularizer(variable)
if regularization is not None:
self._losses.append(regularization)
_add_elements_to_collection(regularization, ops.GraphKeys.REGULARIZATION_LOSSES)
if trainable:
self._trainable_variables.append(variable)
else:
self._non_trainable_variables.append(variable)
return variable
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:57,代码来源:base.py
示例18: DISABLED_testShared
def DISABLED_testShared(self):
with self.test_session():
with specs.ops:
# pylint: disable=undefined-variable
f = Shared(Fr(100))
g = f | f | f | f
inputs = constant_op.constant(_rand(10, 100))
_ = g.funcall(inputs)
self.assertEqual(len(variables.global_variables()), 2)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:9,代码来源:specs_test.py
示例19: _get_variable_for
def _get_variable_for(v):
"""Returns the ResourceVariable responsible for v, or v if not necessary."""
if v.op.type == "ResourceGather":
for var in variables.global_variables() + variables.local_variables():
if (isinstance(var, resource_variable_ops.ResourceVariable)
and var.handle is v.op.inputs[0]):
return var
raise ValueError("Got embedding lookup %s but"
" could not locate source variable." % (str(v)))
return v
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:10,代码来源:optimizer.py
示例20: _get_variable
def _get_variable(var_name, part_name, ema):
"""Returns variable of it's moving average by name."""
matches = [
v for v in variables.global_variables()
if ((var_name in v.op.name)
and (part_name in v.op.name)
and (('ExponentialMovingAverage' in v.op.name) == ema))
]
self.assertEqual(len(matches), 1)
return matches[0]
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:10,代码来源:moving_average_optimizer_test.py
注:本文中的tensorflow.python.ops.variables.global_variables函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论