本文整理汇总了Python中tensorflow.python.ops.state_ops.assign_add函数的典型用法代码示例。如果您正苦于以下问题:Python assign_add函数的具体用法?Python assign_add怎么用?Python assign_add使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assign_add函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testTensorBoardDebuggerWrapperDisablingTracebackSourceSendingWorks
def testTensorBoardDebuggerWrapperDisablingTracebackSourceSendingWorks(self):
with session.Session(config=no_rewrite_session_config()) as sess:
v_1 = variables.Variable(50.0, name="v_1")
v_2 = variables.Variable(-50.0, name="v_2")
delta_1 = constant_op.constant(5.0, name="delta_1")
delta_2 = constant_op.constant(-5.0, name="delta_2")
inc_v_1 = state_ops.assign_add(v_1, delta_1, name="inc_v_1")
inc_v_2 = state_ops.assign_add(v_2, delta_2, name="inc_v_2")
sess.run(variables.global_variables_initializer())
# Disable the sending of traceback and source code.
sess = grpc_wrapper.TensorBoardDebugWrapperSession(
sess, self._debug_server_url_1, send_traceback_and_source_code=False)
for i in xrange(4):
self._server_1.clear_data()
if i == 0:
self._server_1.request_watch(
"delta_1", 0, "DebugIdentity", breakpoint=True)
output = sess.run([inc_v_1, inc_v_2])
self.assertAllClose([50.0 + 5.0 * (i + 1), -50 - 5.0 * (i + 1)], output)
# No op traceback or source code should have been received by the debug
# server due to the disabling above.
with self.assertRaisesRegexp(
ValueError, r"Op .*delta_1.* does not exist"):
self.assertTrue(self._server_1.query_op_traceback("delta_1"))
with self.assertRaisesRegexp(
ValueError, r".* has not received any source file"):
self._server_1.query_source_file_line(__file__, 1)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:33,代码来源:session_debug_grpc_test.py
示例2: _Update_global_variables
def _Update_global_variables():
local_vars = [v for g, v in grads_and_vars if g is not None]
global_center_vars = [self._global_map[var] for var in local_vars]
local_center_vars = [self._local_map[var] for var in local_vars]
local_center_vars_update = []
for lvar, var in zip(local_center_vars, global_center_vars):
local_center_vars_update.append(lvar.assign(var))
update_ops = []
differences = []
with ops.control_dependencies(local_center_vars_update):
for v, lv in zip(local_vars, local_center_vars):
with ops.device(v.device):
differences.append(math_ops.subtract(v, lv))
for lvar, diff in zip(local_vars, differences):
with ops.device(lvar.device):
update_ops.append(
state_ops.assign_sub(lvar,
math_ops.multiply(self._moving_rate,
diff)))
for var, diff in zip(global_center_vars, differences):
with ops.device(var.device):
update_ops.append(
state_ops.assign_add(var,
math_ops.multiply(self._moving_rate,
diff)))
if global_step:
with ops.colocate_with(global_step):
update_ops.append(state_ops.assign_add(global_step, 1))
variable_update = control_flow_ops.group(*(update_ops))
return variable_update
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:30,代码来源:elastic_average_optimizer.py
示例3: test_train_max_steps_is_not_incremental
def test_train_max_steps_is_not_incremental(self):
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions.train(
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=10)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(10, step)
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions.train(
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=15)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(15, step)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:26,代码来源:graph_actions_test.py
示例4: _dense_moving_average
def _dense_moving_average(self, x_tm1, b_t, name, beta=.9):
"""
Creates a moving average for a dense variable.
Inputs:
x_tm1: the associated parameter (e.g. a weight matrix)
b_t: the value to accumulate (e.g. the gradient)
name: a string to use to retrieve it later (e.g. 'm')
beta: the decay factor (defaults to .9)
Outputs:
a_t: the average after moving
t: the internal timestep (used to correct initialization bias)
"""
a_tm1 = self.get_slot(x_tm1, '%s' % name)
tm1 = self.get_slot(x_tm1, '%s/tm1' % name)
t = state_ops.assign_add(tm1, 1, use_locking = self._use_locking)
if beta < 1:
beta_t = ops.convert_to_tensor(beta, name='%s/decay' % name)
beta_t = beta_t * (1-beta**tm1) / (1-beta**t)
else:
beta_t = tm1 / t
a_t = state_ops.assign(a_tm1, beta_t*a_tm1, use_locking=self._use_locking)
a_t = state_ops.assign_add(a_t, (1-beta_t)*b_t, use_locking=self._use_locking)
return a_t, t
开发者ID:tdozat,项目名称:Optimization,代码行数:25,代码来源:optimizers.py
示例5: model_fn_diff_modes
def model_fn_diff_modes(features, labels, mode):
_, _ = features, labels
v = variables.Variable(21, name='some_var')
train_op = None
loss = constant_op.constant(104)
if mode == model_fn_lib.ModeKeys.TRAIN:
loss = constant_op.constant(105)
predictions = constant_op.constant([501])
train_op = control_flow_ops.group(
state_ops.assign_add(training.get_global_step(), 1),
state_ops.assign_add(v, 3))
elif mode == model_fn_lib.ModeKeys.EVAL:
loss = constant_op.constant(106)
predictions = constant_op.constant([502])
else:
loss = constant_op.constant(107)
predictions = constant_op.constant([503])
return model_fn_lib.EstimatorSpec(
mode,
loss=loss,
train_op=train_op,
eval_metric_ops={
'abs_err': metrics_lib.mean_absolute_error(
constant_op.constant(0), predictions)},
predictions=predictions)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:25,代码来源:saved_model_estimator_test.py
示例6: test_train_skip_train_if_max_step_already_saved
def test_train_skip_train_if_max_step_already_saved(self):
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=10)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(10, step)
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=10)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(10, step)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:26,代码来源:graph_actions_test.py
示例7: update_state
def update_state(self, values, sample_weight=None):
"""Accumulates statistics for computing the mean.
For example, if `values` is [1, 3, 5, 7] then the mean is 4. If
the `sample_weight` is specified as [1, 1, 0, 0] then the mean would be 2.
Args:
values: Per-example value.
sample_weight: Optional weighting of each example. Defaults to 1.
"""
values = math_ops.cast(values, self._dtype)
if sample_weight is None:
num_values = math_ops.cast(array_ops.size(values), self._dtype)
else:
sample_weight = math_ops.cast(sample_weight, self._dtype)
# Update dimensions of weights to match with values.
values, _, sample_weight = _squeeze_or_expand_dimensions(
values, None, sample_weight)
sample_weight = weights_broadcast_ops.broadcast_weights(
sample_weight, values)
num_values = math_ops.reduce_sum(sample_weight)
values = math_ops.multiply(values, sample_weight)
values = math_ops.reduce_sum(values)
# Update state variables
state_ops.assign_add(self.total, values)
state_ops.assign_add(self.count, num_values)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:28,代码来源:metrics.py
示例8: testMultiEvalStepIncrements
def testMultiEvalStepIncrements(self):
checkpoint_dir = os.path.join(self.get_temp_dir(), 'eval_ops_and_final_ops')
# Train a model for a single step to get a checkpoint.
self._train_model(checkpoint_dir, num_steps=1)
checkpoint_path = saver.latest_checkpoint(checkpoint_dir)
# Create the model so we have something to restore.
inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
logistic_classifier(inputs)
num_evals = 6
my_var = local_variable(0.0, name='MyVar')
# In eval ops, we also increase the eval step one more time.
eval_ops = [state_ops.assign_add(my_var, 1.0),
state_ops.assign_add(
evaluation._get_or_create_eval_step(), 1, use_locking=True)]
expect_eval_update_counts = num_evals // 2
final_ops = array_ops.identity(my_var)
final_ops_values = evaluation._evaluate_once(
checkpoint_path=checkpoint_path,
eval_ops=eval_ops,
final_ops={'value': final_ops},
hooks=[evaluation._StopAfterNEvalsHook(num_evals),])
self.assertEqual(final_ops_values['value'], expect_eval_update_counts)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:28,代码来源:evaluation_test.py
示例9: testClusterSpecPropagationThreeServers2Graphs
def testClusterSpecPropagationThreeServers2Graphs(self):
"""Boots 3 servers, creates 2 sessions, ensures appropriate operations.
We create 2 clusterspecs:
1. server2 as the master, server1 as a worker
2. server2 as the master, server3 as a worker
We ensure that variables on the workers are independent.
"""
server1 = server_lib.Server.create_local_server()
server2 = server_lib.Server.create_local_server()
server3 = server_lib.Server.create_local_server()
cluster_def1 = cluster_pb2.ClusterDef()
job1 = cluster_def1.job.add()
job1.name = 'worker1'
job1.tasks[0] = server2.target[len('grpc://'):]
job1.tasks[1] = server1.target[len('grpc://'):]
cluster_def2 = cluster_pb2.ClusterDef()
job2 = cluster_def2.job.add()
job2.name = 'worker2'
job2.tasks[0] = server2.target[len('grpc://'):]
job2.tasks[1] = server3.target[len('grpc://'):]
config1 = config_pb2.ConfigProto(cluster_def=cluster_def1)
config2 = config_pb2.ConfigProto(cluster_def=cluster_def2)
with ops.Graph().as_default() as g1:
with ops.device('/job:worker1/task:1'):
var1 = variables.Variable(array_ops.zeros([2]), name='var1')
update_op1 = state_ops.assign_add(
var1, array_ops.ones([2]), name='var1_assign_add')
init1 = variables.global_variables_initializer()
with ops.Graph().as_default() as g2:
with ops.device('/job:worker2/task:1'):
var2 = variables.Variable(array_ops.zeros([2]), name='var2')
update_op2 = state_ops.assign_add(
var2, array_ops.ones([2]), name='var2_assign_add')
init2 = variables.global_variables_initializer()
sess1 = session.Session(server2.target, graph=g1, config=config1)
sess2 = session.Session(server2.target, graph=g2, config=config2)
init1.run(session=sess1)
init2.run(session=sess2)
expected_zeros = np.zeros([2])
expected_ones = np.ones([2])
self.assertAllEqual(expected_zeros, sess1.run(var1))
self.assertAllEqual(expected_zeros, sess2.run(var2))
self.assertAllEqual(expected_ones, sess1.run(update_op1))
self.assertAllEqual(expected_ones, sess1.run(var1))
self.assertAllEqual(expected_zeros, sess2.run(var2))
self.assertAllEqual(expected_ones, sess2.run(update_op2))
self.assertAllEqual(expected_ones + expected_ones, sess1.run(update_op1))
self.assertAllEqual(expected_ones, sess2.run(var2))
self.assertAllEqual(expected_ones + expected_ones, sess1.run(var1))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:60,代码来源:session_clusterspec_prop_test.py
示例10: adder
def adder(x, y):
state_ops.assign_add(step, 1)
summary_ops.generic('x', x)
summary_ops.generic('y', y)
sum_ = x + y
summary_ops.generic('sum', sum_)
return sum_
开发者ID:AnishShah,项目名称:tensorflow,代码行数:7,代码来源:summary_ops_test.py
示例11: testToggleBreakpointsWorks
def testToggleBreakpointsWorks(self):
with session.Session(
config=session_debug_testlib.no_rewrite_session_config()) as sess:
v_1 = variables.VariableV1(50.0, name="v_1")
v_2 = variables.VariableV1(-50.0, name="v_2")
delta_1 = constant_op.constant(5.0, name="delta_1")
delta_2 = constant_op.constant(-5.0, name="delta_2")
inc_v_1 = state_ops.assign_add(v_1, delta_1, name="inc_v_1")
inc_v_2 = state_ops.assign_add(v_2, delta_2, name="inc_v_2")
sess.run([v_1.initializer, v_2.initializer])
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugIdentity(gated_grpc=true)"],
debug_urls=[self._debug_server_url_1])
for i in xrange(4):
self._server_1.clear_data()
if i in (0, 2):
# Enable breakpoint at delta_[1,2]:0:DebugIdentity in runs 0 and 2.
self._server_1.request_watch(
"delta_1", 0, "DebugIdentity", breakpoint=True)
self._server_1.request_watch(
"delta_2", 0, "DebugIdentity", breakpoint=True)
else:
# Disable the breakpoint in runs 1 and 3.
self._server_1.request_unwatch("delta_1", 0, "DebugIdentity")
self._server_1.request_unwatch("delta_2", 0, "DebugIdentity")
output = sess.run([inc_v_1, inc_v_2],
options=run_options, run_metadata=run_metadata)
self.assertAllClose([50.0 + 5.0 * (i + 1), -50 - 5.0 * (i + 1)], output)
if i in (0, 2):
# During runs 0 and 2, the server should have received the published
# debug tensor delta:0:DebugIdentity. The breakpoint should have been
# unblocked by EventReply reponses from the server.
self.assertAllClose(
[5.0],
self._server_1.debug_tensor_values["delta_1:0:DebugIdentity"])
self.assertAllClose(
[-5.0],
self._server_1.debug_tensor_values["delta_2:0:DebugIdentity"])
# After the runs, the server should have properly registered the
# breakpoints due to the request_unwatch calls.
self.assertSetEqual({("delta_1", 0, "DebugIdentity"),
("delta_2", 0, "DebugIdentity")},
self._server_1.breakpoints)
else:
# After the end of runs 1 and 3, the server has received the requests
# to disable the breakpoint at delta:0:DebugIdentity.
self.assertSetEqual(set(), self._server_1.breakpoints)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:57,代码来源:session_debug_grpc_test.py
示例12: _model_fn_with_incremental_loss
def _model_fn_with_incremental_loss(features, labels, mode):
_, _ = features, labels
local_weight = variables.Variable(
0., name='local_weight', collections=[ops.GraphKeys.LOCAL_VARIABLES])
# Loss will be 2, 4, 6, ...
loss = 2 * state_ops.assign_add(local_weight, 1.)
return model_fn_lib.EstimatorSpec(
mode,
loss=loss,
train_op=state_ops.assign_add(training.get_global_step(), 1))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:10,代码来源:estimator_test.py
示例13: model_fn
def model_fn(features, labels, mode):
_, _ = features, labels
v = variables.Variable(21, name='some_var')
scaffold = monitored_session.Scaffold(
local_init_op=state_ops.assign_add(v, -3).op
)
return model_fn_lib.EstimatorSpec(
mode,
scaffold=scaffold,
train_op=state_ops.assign_add(training.get_global_step(), 1),
loss=array_ops.identity(v))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:11,代码来源:saved_model_estimator_test.py
示例14: setUp
def setUp(self):
self.session_root = tempfile.mkdtemp()
self.v = variables.Variable(10.0, dtype=dtypes.float32, name="v")
self.delta = constant_op.constant(1.0, dtype=dtypes.float32, name="delta")
self.eta = constant_op.constant(-1.4, dtype=dtypes.float32, name="eta")
self.inc_v = state_ops.assign_add(self.v, self.delta, name="inc_v")
self.dec_v = state_ops.assign_add(self.v, self.eta, name="dec_v")
self.sess = session.Session()
self.sess.run(self.v.initializer)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:11,代码来源:disk_usage_test.py
示例15: test_get_updates_for
def test_get_updates_for(self):
a = keras.layers.Input(shape=(1,))
dense_layer = keras.layers.Dense(1)
dense_layer.build((None, 1))
update_1 = state_ops.assign_add(dense_layer.kernel, a)
update_2 = state_ops.assign_add(dense_layer.kernel, [[1.]])
dense_layer.add_update(update_1, inputs=a)
dense_layer.add_update(update_2, inputs=None)
self.assertListEqual(dense_layer.get_updates_for(a), [update_1])
self.assertListEqual(dense_layer.get_updates_for(None), [update_2])
开发者ID:japrogramer,项目名称:tensorflow,代码行数:11,代码来源:topology_test.py
示例16: setUp
def setUp(self):
test.TestCase.setUp(self)
self.log_dir = 'log/dir'
self.summary_writer = fake_summary_writer.FakeSummaryWriter(self.log_dir)
var = variable_scope.get_variable('var', initializer=0.0, use_resource=True)
tensor = state_ops.assign_add(var, 1.0)
self.summary_op = summary_lib.scalar('my_summary', tensor)
with variable_scope.variable_scope('foo', use_resource=True):
global_step = variables.get_or_create_global_step()
self.train_op = state_ops.assign_add(global_step, 1)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:13,代码来源:basic_session_run_hooks_test.py
示例17: setUp
def setUp(self):
self.session_root = tempfile.mkdtemp()
self.v = variables.VariableV1(10.0, dtype=dtypes.float32, name="v")
self.delta = constant_op.constant(1.0, dtype=dtypes.float32, name="delta")
self.eta = constant_op.constant(-1.4, dtype=dtypes.float32, name="eta")
self.inc_v = state_ops.assign_add(self.v, self.delta, name="inc_v")
self.dec_v = state_ops.assign_add(self.v, self.eta, name="dec_v")
self.ph = array_ops.placeholder(dtypes.float32, shape=(), name="ph")
self.inc_w_ph = state_ops.assign_add(self.v, self.ph, name="inc_w_ph")
self.sess = session.Session()
self.sess.run(self.v.initializer)
开发者ID:aritratony,项目名称:tensorflow,代码行数:14,代码来源:dumping_wrapper_test.py
示例18: testTensorBoardDebuggerWrapperToggleBreakpointsWorks
def testTensorBoardDebuggerWrapperToggleBreakpointsWorks(self):
with session.Session(config=no_rewrite_session_config()) as sess:
v_1 = variables.Variable(50.0, name="v_1")
v_2 = variables.Variable(-50.0, name="v_2")
delta_1 = constant_op.constant(5.0, name="delta_1")
delta_2 = constant_op.constant(-5.0, name="delta_2")
inc_v_1 = state_ops.assign_add(v_1, delta_1, name="inc_v_1")
inc_v_2 = state_ops.assign_add(v_2, delta_2, name="inc_v_2")
sess.run([v_1.initializer, v_2.initializer])
# The TensorBoardDebugWrapperSession should add a DebugIdentity debug op
# with attribute gated_grpc=True for every tensor in the graph.
sess = grpc_wrapper.TensorBoardDebugWrapperSession(
sess, self._debug_server_url_1)
for i in xrange(4):
self._server_1.clear_data()
if i in (0, 2):
# Enable breakpoint at delta_[1,2]:0:DebugIdentity in runs 0 and 2.
self._server_1.request_watch(
"delta_1", 0, "DebugIdentity", breakpoint=True)
self._server_1.request_watch(
"delta_2", 0, "DebugIdentity", breakpoint=True)
else:
# Disable the breakpoint in runs 1 and 3.
self._server_1.request_unwatch("delta_1", 0, "DebugIdentity")
self._server_1.request_unwatch("delta_2", 0, "DebugIdentity")
output = sess.run([inc_v_1, inc_v_2])
self.assertAllClose([50.0 + 5.0 * (i + 1), -50 - 5.0 * (i + 1)], output)
if i in (0, 2):
# During runs 0 and 2, the server should have received the published
# debug tensor delta:0:DebugIdentity. The breakpoint should have been
# unblocked by EventReply reponses from the server.
self.assertAllClose(
[5.0],
self._server_1.debug_tensor_values["delta_1:0:DebugIdentity"])
self.assertAllClose(
[-5.0],
self._server_1.debug_tensor_values["delta_2:0:DebugIdentity"])
# After the runs, the server should have properly registered the
# breakpoints.
else:
# After the end of runs 1 and 3, the server has received the requests
# to disable the breakpoint at delta:0:DebugIdentity.
self.assertSetEqual(set(), self._server_1.breakpoints)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:49,代码来源:session_debug_grpc_test.py
示例19: _createGraph
def _createGraph(self):
"""Create graph for testing.
Returns:
Python Graph object.
"""
with ops.Graph().as_default() as graph:
with ops.device("/job:worker/task:0/cpu:0"):
self.a = variables.VariableV1(10.0, name="a")
self.b = variables.VariableV1(100.0, name="b")
self.inc_a = state_ops.assign_add(self.a, 2.0, name="inc_a")
self.dec_b = state_ops.assign_add(self.b, -5.0, name="dec_b")
self.p = math_ops.multiply(self.inc_a, self.dec_b, name="p")
self.q = math_ops.negative(self.p, name="q")
return graph
开发者ID:perfmjs,项目名称:tensorflow,代码行数:15,代码来源:dist_session_debug_grpc_test.py
示例20: _minimize
def _minimize(loss, global_step):
trainable_vars = ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)
testcase.assertItemsEqual(
expected_var_names,
[var.name for var in trainable_vars])
# Verify loss. We can't check the value directly, so we add an assert op.
testcase.assertEquals(0, loss.shape.ndims)
if expected_loss is None:
return state_ops.assign_add(global_step, 1).op
assert_loss = _assert_close(
math_ops.to_float(expected_loss, name='expected'), loss,
name='assert_loss')
with ops.control_dependencies((assert_loss,)):
return state_ops.assign_add(global_step, 1).op
开发者ID:cameronphchen,项目名称:tensorflow,代码行数:15,代码来源:dnn_test.py
注:本文中的tensorflow.python.ops.state_ops.assign_add函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论