• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python special_math_ops.lbeta函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.special_math_ops.lbeta函数的典型用法代码示例。如果您正苦于以下问题:Python lbeta函数的具体用法?Python lbeta怎么用?Python lbeta使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了lbeta函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_empty_rank2_or_greater_input_gives_empty_output_dynamic_alloc

 def test_empty_rank2_or_greater_input_gives_empty_output_dynamic_alloc(self):
   with self.test_session(use_gpu=self._use_gpu):
     ph = array_ops.placeholder(dtypes.float32)
     self.assertAllEqual(
         [], special_math_ops.lbeta(ph).eval(feed_dict={ph: [[]]}))
     self.assertAllEqual(
         [[]], special_math_ops.lbeta(ph).eval(feed_dict={ph: [[[]]]}))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:7,代码来源:special_math_ops_test.py


示例2: test_two_dimensional_arg

 def test_two_dimensional_arg(self):
   # Should evaluate to 1/2.
   x_one_half = [[2, 1.], [2, 1.]]
   with self.test_session(use_gpu=self._use_gpu):
     self.assertAllClose(
         [0.5, 0.5], math_ops.exp(special_math_ops.lbeta(x_one_half)).eval())
     self.assertEqual((2,), special_math_ops.lbeta(x_one_half).get_shape())
开发者ID:Immexxx,项目名称:tensorflow,代码行数:7,代码来源:special_math_ops_test.py


示例3: _log_prob

 def _log_prob(self, counts):
   counts = self._assert_valid_counts(counts)
   ordered_prob = (special_math_ops.lbeta(self.alpha + counts) -
                   special_math_ops.lbeta(self.alpha))
   log_prob = ordered_prob + distribution_util.log_combinations(
       self.n, counts)
   return log_prob
开发者ID:ivankreso,项目名称:tensorflow,代码行数:7,代码来源:dirichlet_multinomial.py


示例4: _log_prob

 def _log_prob(self, counts):
   counts = self._maybe_assert_valid_sample(counts)
   ordered_prob = (
       special_math_ops.lbeta(self.concentration + counts)
       - special_math_ops.lbeta(self.concentration))
   return ordered_prob + distribution_util.log_combinations(
       self.total_count, counts)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:dirichlet_multinomial.py


示例5: log_pmf

  def log_pmf(self, counts, name=None):
    """`Log(P[counts])`, computed for every batch member.

    For each batch of counts `[c_1,...,c_k]`, `P[counts]` is the probability
    that after sampling `sum_j c_j` draws from this Dirichlet Multinomial
    distribution, the number of draws falling in class `j` is `c_j`.  Note that
    different sequences of draws can result in the same counts, thus the
    probability includes a combinatorial coefficient.

    Args:
      counts:  Non-negative `float`, `double`, or `int` tensor whose shape can
        be broadcast with `self.alpha`.  For fixed leading dimensions, the last
        dimension represents counts for the corresponding Dirichlet Multinomial
        distribution in `self.alpha`.
      name:  Name to give this Op, defaults to "log_pmf".

    Returns:
      Log probabilities for each record, shape `[N1,...,Nn]`.
    """
    alpha = self._alpha
    with ops.op_scope([alpha, counts], name, 'log_pmf'):
      counts = self._check_counts(counts)
      ordered_pmf = (special_math_ops.lbeta(alpha + counts) -
                     special_math_ops.lbeta(alpha))
      log_pmf = ordered_pmf + _log_combinations(counts)
      # If alpha = counts = [[]], ordered_pmf carries the right shape, which is
      # [].  However, since reduce_sum([[]]) = [0], log_combinations = [0],
      # which is not correct.  Luckily, [] + [0] = [], so the sum is fine, but
      # shape must be inferred from ordered_pmf.
      # Note also that tf.constant([]).get_shape() = TensorShape([Dimension(0)])
      log_pmf.set_shape(ordered_pmf.get_shape())
      return log_pmf
开发者ID:01bui,项目名称:tensorflow,代码行数:32,代码来源:dirichlet_multinomial.py


示例6: log_prob

  def log_prob(self, counts, name="log_prob"):
    """`Log(P[counts])`, computed for every batch member.

    For each batch of counts `[n_1,...,n_k]`, `P[counts]` is the probability
    that after sampling `n` draws from this Dirichlet Multinomial
    distribution, the number of draws falling in class `j` is `n_j`.  Note that
    different sequences of draws can result in the same counts, thus the
    probability includes a combinatorial coefficient.

    Args:
      counts:  Non-negative tensor with dtype `dtype` and whose shape can be
        broadcast with `self.alpha`.  For fixed leading dimensions, the last
        dimension represents counts for the corresponding Dirichlet Multinomial
        distribution in `self.alpha`. `counts` is only legal if it sums up to
        `n` and its components are equal to integer values.
      name:  Name to give this Op, defaults to "log_prob".

    Returns:
      Log probabilities for each record, shape `[N1,...,Nn]`.
    """
    n = self._n
    alpha = self._alpha
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[n, alpha, counts]):
        counts = self._check_counts(counts)

        ordered_prob = (special_math_ops.lbeta(alpha + counts) -
                        special_math_ops.lbeta(alpha))
        log_prob = ordered_prob + distribution_util.log_combinations(
            n, counts)
        return log_prob
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:31,代码来源:dirichlet_multinomial.py


示例7: test_complicated_shape

 def test_complicated_shape(self):
   with self.session(use_gpu=True):
     x = ops.convert_to_tensor(np.random.rand(3, 2, 2))
     self.assertAllEqual(
         (3, 2), self.evaluate(array_ops.shape(special_math_ops.lbeta(x))))
     self.assertEqual(
         tensor_shape.TensorShape([3, 2]),
         special_math_ops.lbeta(x).get_shape())
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:8,代码来源:special_math_ops_test.py


示例8: test_one_dimensional_arg

 def test_one_dimensional_arg(self):
   # Should evaluate to 1 and 1/2.
   x_one = [1, 1.]
   x_one_half = [2, 1.]
   with self.test_session(use_gpu=self._use_gpu):
     self.assertAllClose(1, math_ops.exp(special_math_ops.lbeta(x_one)).eval())
     self.assertAllClose(
         0.5, math_ops.exp(special_math_ops.lbeta(x_one_half)).eval())
     self.assertEqual([], special_math_ops.lbeta(x_one).get_shape())
开发者ID:Immexxx,项目名称:tensorflow,代码行数:9,代码来源:special_math_ops_test.py


示例9: test_length_1_last_dimension_results_in_one

 def test_length_1_last_dimension_results_in_one(self):
   # If there is only one coefficient, the formula still works, and we get one
   # as the answer, always.
   x_a = [5.5]
   x_b = [0.1]
   with self.test_session(use_gpu=True):
     self.assertAllClose(1, math_ops.exp(special_math_ops.lbeta(x_a)).eval())
     self.assertAllClose(1, math_ops.exp(special_math_ops.lbeta(x_b)).eval())
     self.assertEqual((), special_math_ops.lbeta(x_a).get_shape())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:9,代码来源:special_math_ops_test.py


示例10: test_two_dimensional_proper_shape

 def test_two_dimensional_proper_shape(self):
   # Should evaluate to 1/2.
   x_one_half = [[2, 1.], [2, 1.]]
   with self.test_session(use_gpu=True):
     self.assertAllClose(
         [0.5, 0.5], math_ops.exp(special_math_ops.lbeta(x_one_half)).eval())
     self.assertEqual(
         (2,), array_ops.shape(special_math_ops.lbeta(x_one_half)).eval())
     self.assertEqual(
         tensor_shape.TensorShape([2]),
         special_math_ops.lbeta(x_one_half).get_shape())
开发者ID:Lin-jipeng,项目名称:tensorflow,代码行数:11,代码来源:special_math_ops_test.py


示例11: test_two_dimensional_arg_dynamic

 def test_two_dimensional_arg_dynamic(self):
   # Should evaluate to 1/2.
   x_one_half = [[2, 1.], [2, 1.]]
   with self.test_session(use_gpu=True):
     ph = array_ops.placeholder(dtypes.float32)
     beta_ph = math_ops.exp(special_math_ops.lbeta(ph))
     self.assertAllClose([0.5, 0.5], beta_ph.eval(feed_dict={ph: x_one_half}))
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:7,代码来源:special_math_ops_test.py


示例12: test_empty_rank1_returns_negative_infinity

  def test_empty_rank1_returns_negative_infinity(self):
    with self.test_session(use_gpu=True):
      x = constant_op.constant([], shape=[0])
      lbeta_x = special_math_ops.lbeta(x)
      expected_result = constant_op.constant(-np.inf, shape=())

      self.assertAllEqual(expected_result.eval(), lbeta_x.eval())
      self.assertEqual(expected_result.get_shape(), lbeta_x.get_shape())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:8,代码来源:special_math_ops_test.py


示例13: _log_prob

 def _log_prob(self, x):
   x = ops.convert_to_tensor(x, name="x")
   x = self._assert_valid_sample(x)
   unnorm_prob = (self.alpha - 1.) * math_ops.log(x)
   log_prob = math_ops.reduce_sum(
       unnorm_prob, reduction_indices=[-1],
       keep_dims=False) - special_math_ops.lbeta(self.alpha)
   return log_prob
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:8,代码来源:dirichlet.py


示例14: test_one_dimensional_arg_dynamic_alloc

 def test_one_dimensional_arg_dynamic_alloc(self):
   # Should evaluate to 1 and 1/2.
   x_one = [1, 1.]
   x_one_half = [2, 1.]
   with self.test_session(use_gpu=self._use_gpu):
     ph = array_ops.placeholder(dtypes.float32)
     beta_ph = math_ops.exp(special_math_ops.lbeta(ph))
     self.assertAllClose(1, beta_ph.eval(feed_dict={ph: x_one}))
     self.assertAllClose(0.5, beta_ph.eval(feed_dict={ph: x_one_half}))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:9,代码来源:special_math_ops_test.py


示例15: _entropy

 def _entropy(self):
   u = array_ops.expand_dims(self.df * self._ones(), -1)
   v = array_ops.expand_dims(self._ones(), -1)
   beta_arg = array_ops.concat_v2([u, v], len(u.get_shape()) - 1) / 2
   half_df = 0.5 * self.df
   return ((0.5 + half_df) *
           (math_ops.digamma(0.5 + half_df) - math_ops.digamma(half_df)) + 0.5
           * math_ops.log(self.df) + special_math_ops.lbeta(beta_arg) +
           math_ops.log(self.sigma))
开发者ID:kadeng,项目名称:tensorflow,代码行数:9,代码来源:student_t.py


示例16: _entropy

 def _entropy(self):
   entropy = special_math_ops.lbeta(self.alpha)
   entropy += math_ops.digamma(self.alpha_sum) * (
       self.alpha_sum - math_ops.cast(self.event_shape()[0], self.dtype))
   entropy += -math_ops.reduce_sum(
       (self.alpha - 1.) * math_ops.digamma(self.alpha),
       reduction_indices=[-1],
       keep_dims=False)
   return entropy
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:9,代码来源:dirichlet.py


示例17: log_pmf

  def log_pmf(self, counts, name='log_pmf'):
    """`Log(P[counts])`, computed for every batch member.

    For each batch of counts `[n_1,...,n_k]`, `P[counts]` is the probability
    that after sampling `n` draws from this Dirichlet Multinomial
    distribution, the number of draws falling in class `j` is `n_j`.  Note that
    different sequences of draws can result in the same counts, thus the
    probability includes a combinatorial coefficient.

    Args:
      counts:  Non-negative `float` or `double` tensor whose shape can
        be broadcast with `self.alpha`.  For fixed leading dimensions, the last
        dimension represents counts for the corresponding Dirichlet Multinomial
        distribution in `self.alpha`. `counts` is only legal if it sums up to
        `n` and its components are equal to integral values. The second
        condition is relaxed if `allow_arbitrary_counts` is set.
      name:  Name to give this Op, defaults to "log_pmf".

    Returns:
      Log probabilities for each record, shape `[N1,...,Nn]`.
    """
    n = self._n
    alpha = self._alpha
    with ops.name_scope(self.name):
      with ops.op_scope([n, alpha, counts], name):
        counts = self._check_counts(counts)
        # Use the same dtype as alpha for computations.
        counts = math_ops.cast(counts, self.dtype)

        ordered_pmf = (special_math_ops.lbeta(alpha + counts) -
                       special_math_ops.lbeta(alpha))
        log_pmf = ordered_pmf + _log_combinations(n, counts)
        # If alpha = counts = [[]], ordered_pmf carries the right shape, which
        # is [].  However, since reduce_sum([[]]) = [0], log_combinations = [0],
        # which is not correct.  Luckily, [] + [0] = [], so the sum is fine, but
        # shape must be inferred from ordered_pmf. We must also make this
        # broadcastable with n, so this is multiplied by n to ensure the shape
        # is correctly inferred.
        # Note also that tf.constant([]).get_shape() =
        # TensorShape([Dimension(0)])
        broadcasted_tensor = ordered_pmf * n
        log_pmf.set_shape(broadcasted_tensor.get_shape())
        return log_pmf
开发者ID:Brandon-Tai,项目名称:tensorflow,代码行数:43,代码来源:dirichlet_multinomial.py


示例18: _entropy

 def _entropy(self):
   v = array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)[..., None]
   u = v * self.df[..., None]
   beta_arg = array_ops.concat([u, v], -1) / 2.
   return (math_ops.log(math_ops.abs(self.scale)) +
           0.5 * math_ops.log(self.df) +
           special_math_ops.lbeta(beta_arg) +
           0.5 * (self.df + 1.) *
           (math_ops.digamma(0.5 * (self.df + 1.)) -
            math_ops.digamma(0.5 * self.df)))
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:10,代码来源:student_t.py


示例19: test_empty_rank2_with_zero_last_dim_returns_negative_infinity

  def test_empty_rank2_with_zero_last_dim_returns_negative_infinity(self):
    with self.test_session(use_gpu=True):
      event_size = 0
      for batch_size in [0, 1, 2]:
        x = constant_op.constant([], shape=[batch_size, event_size])
        lbeta_x = special_math_ops.lbeta(x)
        expected_result = constant_op.constant(-np.inf, shape=[batch_size])

        self.assertAllEqual(expected_result.eval(), lbeta_x.eval())
        self.assertEqual(expected_result.get_shape(), lbeta_x.get_shape())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:10,代码来源:special_math_ops_test.py


示例20: test_empty_rank2_with_zero_batch_dim_returns_empty

  def test_empty_rank2_with_zero_batch_dim_returns_empty(self):
    with self.test_session(use_gpu=self._use_gpu):
      batch_size = 0
      for event_size in [0, 1, 2]:
        x = constant_op.constant([], shape=[batch_size, event_size])
        lbeta_x = special_math_ops.lbeta(x)

        expected_result = constant_op.constant([], shape=[batch_size])

        self.assertAllEqual(expected_result.eval(), lbeta_x.eval())
        self.assertEqual(expected_result.get_shape(), lbeta_x.get_shape())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:11,代码来源:special_math_ops_test.py



注:本文中的tensorflow.python.ops.special_math_ops.lbeta函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python spectral_ops_test_util.fft_kernel_label_map函数代码示例发布时间:2022-05-27
下一篇:
Python special_math_ops.einsum函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap