本文整理汇总了Python中tensorflow.python.ops.sparse_ops.sparse_retain函数的典型用法代码示例。如果您正苦于以下问题:Python sparse_retain函数的具体用法?Python sparse_retain怎么用?Python sparse_retain使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sparse_retain函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _prune_invalid_weights
def _prune_invalid_weights(sparse_ids, sparse_weights):
"""Prune invalid weights (< 0) from the input ids and weights."""
if sparse_weights is not None:
is_weights_valid = math_ops.greater(sparse_weights.values, 0)
sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_weights_valid)
sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_weights_valid)
return sparse_ids, sparse_weights
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:7,代码来源:embedding_ops.py
示例2: _prune_invalid_ids
def _prune_invalid_ids(sparse_ids, sparse_weights):
"""Prune invalid IDs (< 0) from the input ids and weights."""
is_id_valid = math_ops.greater_equal(sparse_ids.values, 0)
if sparse_weights is not None:
is_id_valid = math_ops.logical_and(is_id_valid, math_ops.greater(sparse_weights.values, 0))
sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid)
if sparse_weights is not None:
sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid)
return sparse_ids, sparse_weights
开发者ID:yuikns,项目名称:tensorflow,代码行数:9,代码来源:embedding_ops.py
示例3: sparse_boolean_mask
def sparse_boolean_mask(sparse_tensor, mask, name="sparse_boolean_mask"):
"""Boolean mask for `SparseTensor`s.
Args:
sparse_tensor: a `SparseTensor`.
mask: a 1D boolean dense`Tensor` whose length is equal to the 0th dimension
of `sparse_tensor`.
name: optional name for this operation.
Returns:
A `SparseTensor` that contains row `k` of `sparse_tensor` iff `mask[k]` is
`True`.
"""
# TODO(jamieas): consider mask dimension > 1 for symmetry with `boolean_mask`.
with ops.op_scope([sparse_tensor, mask], name):
mask = ops.convert_to_tensor(mask)
mask_rows = array_ops.where(mask)
first_indices = array_ops.squeeze(array_ops.slice(sparse_tensor.indices,
[0, 0], [-1, 1]))
# Identify indices corresponding to the rows identified by mask_rows.
sparse_entry_matches = functional_ops.map_fn(
lambda x: math_ops.equal(first_indices, x),
mask_rows,
dtype=dtypes.bool)
# Combine the rows of index_matches to form a mask for the sparse indices
# and values.
to_retain = array_ops.reshape(
functional_ops.foldl(math_ops.logical_or, sparse_entry_matches), [-1])
return sparse_ops.sparse_retain(sparse_tensor, to_retain)
开发者ID:363158858,项目名称:tensorflow,代码行数:30,代码来源:boolean_mask.py
示例4: testRetainNone
def testRetainNone(self):
with self.test_session(use_gpu=False) as sess:
sp_input = self._SparseTensor_5x6()
to_retain = np.zeros((6,), dtype=np.bool)
sp_output = sparse_ops.sparse_retain(sp_input, to_retain)
output = sess.run(sp_output)
self.assertAllEqual(output.indices, np.array([]).reshape((0, 2)))
self.assertAllEqual(output.values, [])
self.assertAllEqual(output.shape, [5, 6])
开发者ID:govindap,项目名称:tensorflow,代码行数:11,代码来源:sparse_ops_test.py
示例5: testBasic
def testBasic(self):
with self.test_session(use_gpu=False) as sess:
sp_input = self._SparseTensor_5x6()
to_retain = np.array([1, 0, 0, 1, 1, 0], dtype=np.bool)
sp_output = sparse_ops.sparse_retain(sp_input, to_retain)
output = sess.run(sp_output)
self.assertAllEqual(output.indices, [[0, 0], [1, 4], [3, 2]])
self.assertAllEqual(output.values, [0, 14, 32])
self.assertAllEqual(output.shape, [5, 6])
开发者ID:govindap,项目名称:tensorflow,代码行数:11,代码来源:sparse_ops_test.py
示例6: testRetainNone
def testRetainNone(self):
with test_util.force_cpu():
sp_input = self._SparseTensor_5x6()
to_retain = np.zeros((6,), dtype=np.bool)
sp_output = sparse_ops.sparse_retain(sp_input, to_retain)
output = self.evaluate(sp_output)
self.assertAllEqual(output.indices, np.array([]).reshape((0, 2)))
self.assertAllEqual(output.values, [])
self.assertAllEqual(output.dense_shape, [5, 6])
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:11,代码来源:sparse_ops_test.py
示例7: testBasic
def testBasic(self):
with test_util.force_cpu():
for sp_input in (self._SparseTensorValue_5x6(), self._SparseTensor_5x6()):
to_retain = np.array([1, 0, 0, 1, 1, 0], dtype=np.bool)
sp_output = sparse_ops.sparse_retain(sp_input, to_retain)
output = self.evaluate(sp_output)
self.assertAllEqual(output.indices, [[0, 0], [1, 4], [3, 2]])
self.assertAllEqual(output.values, [0, 14, 32])
self.assertAllEqual(output.dense_shape, [5, 6])
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:11,代码来源:sparse_ops_test.py
示例8: testMismatchedRetainShape
def testMismatchedRetainShape(self):
with self.test_session(use_gpu=False):
sp_input = self._SparseTensor_5x6()
to_retain = np.array([1, 0, 0, 1, 0], dtype=np.bool)
with self.assertRaises(ValueError):
sparse_ops.sparse_retain(sp_input, to_retain)
开发者ID:govindap,项目名称:tensorflow,代码行数:6,代码来源:sparse_ops_test.py
示例9: testMismatchedRetainShape
def testMismatchedRetainShape(self):
with test_util.force_cpu():
sp_input = self._SparseTensor_5x6()
to_retain = np.array([1, 0, 0, 1, 0], dtype=np.bool)
with self.assertRaises(ValueError):
sparse_ops.sparse_retain(sp_input, to_retain)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:6,代码来源:sparse_ops_test.py
注:本文中的tensorflow.python.ops.sparse_ops.sparse_retain函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论