• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python resources.shared_resources函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.resources.shared_resources函数的典型用法代码示例。如果您正苦于以下问题:Python shared_resources函数的具体用法?Python shared_resources怎么用?Python shared_resources使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了shared_resources函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _get_train_op_and_ensemble

  def _get_train_op_and_ensemble(self, head, config, is_classification,
                                 train_in_memory):
    """Calls bt_model_fn() and returns the train_op and ensemble_serialzed."""
    features, labels = _make_train_input_fn(is_classification)()
    estimator_spec = boosted_trees._bt_model_fn(  # pylint:disable=protected-access
        features=features,
        labels=labels,
        mode=model_fn.ModeKeys.TRAIN,
        head=head,
        feature_columns=self._feature_columns,
        tree_hparams=self._tree_hparams,
        example_id_column_name=EXAMPLE_ID_COLUMN,
        n_batches_per_layer=1,
        config=config,
        train_in_memory=train_in_memory)
    resources.initialize_resources(resources.shared_resources()).run()
    variables.global_variables_initializer().run()
    variables.local_variables_initializer().run()

    # Gets the train_op and serialized proto of the ensemble.
    shared_resources = resources.shared_resources()
    self.assertEqual(1, len(shared_resources))
    train_op = estimator_spec.train_op
    with ops.control_dependencies([train_op]):
      _, ensemble_serialized = (
          gen_boosted_trees_ops.boosted_trees_serialize_ensemble(
              shared_resources[0].handle))
    return train_op, ensemble_serialized
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:28,代码来源:boosted_trees_test.py


示例2: testBiasEnsembleMultiClass

  def testBiasEnsembleMultiClass(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      tree = tree_ensemble_config.trees.add()
      tree_ensemble_config.tree_metadata.add().is_finalized = True
      leaf = tree.nodes.add().leaf
      _append_to_leaf(leaf, 0, -0.4)
      _append_to_leaf(leaf, 1, 0.9)

      tree_ensemble_config.tree_weights.append(1.0)

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="multiclass")
      resources.initialize_resources(resources.shared_resources()).run()

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 3

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          reduce_dim=True)
      self.assertAllClose([[-0.4, 0.9], [-0.4, 0.9]], result.eval())

      # Empty dropout.
      self.assertAllEqual([[], []], dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:29,代码来源:prediction_ops_test.py


示例3: testTreeFinalized

  def testTreeFinalized(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Depth 3 tree.
      tree1 = tree_ensemble_config.trees.add()
      _set_float_split(tree1.nodes.add().dense_float_binary_split, 0, 9.0, 1, 2)
      _set_float_split(tree1.nodes.add()
                       .sparse_float_binary_split_default_left.split, 0, -20.0,
                       3, 4)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.2)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.3)
      _set_categorical_id_split(tree1.nodes.add().categorical_id_binary_split,
                                0, 9, 5, 6)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.5)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.6)

      tree_ensemble_config.tree_weights.append(1.0)
      tree_ensemble_config.tree_metadata.add().is_finalized = True

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="full_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()

      result = prediction_ops.gradient_trees_partition_examples(
          tree_ensemble_handle, [self._dense_float_tensor], [
              self._sparse_float_indices1, self._sparse_float_indices2
          ], [self._sparse_float_values1, self._sparse_float_values2],
          [self._sparse_float_shape1,
           self._sparse_float_shape2], [self._sparse_int_indices1],
          [self._sparse_int_values1], [self._sparse_int_shape1])

      self.assertAllEqual([0, 0], result.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:34,代码来源:prediction_ops_test.py


示例4: testSaveRestoreBeforeFlush

  def testSaveRestoreBeforeFlush(self):
    save_dir = os.path.join(self.get_temp_dir(), "save_restore")
    save_path = os.path.join(tempfile.mkdtemp(prefix=save_dir), "hash")

    with self.cached_session() as sess:
      accumulator = boosted_trees_ops.QuantileAccumulator(
          num_streams=2, num_quantiles=3, epsilon=self.eps, name="q0")

      save = saver.Saver()
      resources.initialize_resources(resources.shared_resources()).run()

      summaries = accumulator.add_summaries([self._feature_0, self._feature_1],
                                            self._example_weights)
      self.evaluate(summaries)
      buckets = accumulator.get_bucket_boundaries()
      self.assertAllClose([], buckets[0].eval())
      self.assertAllClose([], buckets[1].eval())
      save.save(sess, save_path)
      self.evaluate(accumulator.flush())
      self.assertAllClose(self._feature_0_boundaries, buckets[0].eval())
      self.assertAllClose(self._feature_1_boundaries, buckets[1].eval())

    with self.session(graph=ops.Graph()) as sess:
      accumulator = boosted_trees_ops.QuantileAccumulator(
          num_streams=2, num_quantiles=3, epsilon=self.eps, name="q0")
      save = saver.Saver()
      save.restore(sess, save_path)
      buckets = accumulator.get_bucket_boundaries()
      self.assertAllClose([], buckets[0].eval())
      self.assertAllClose([], buckets[1].eval())
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:30,代码来源:quantile_ops_test.py


示例5: testAverageMoreThanNumTreesExist

  def testAverageMoreThanNumTreesExist(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      adjusted_tree_ensemble_config = (
          tree_config_pb2.DecisionTreeEnsembleConfig())
      # When we say to average over more trees than possible, it is averaging
      # across all trees.
      total_num = 100
      for i in range(0, total_num):
        tree = tree_ensemble_config.trees.add()
        _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)

        tree_ensemble_config.tree_metadata.add().is_finalized = True
        tree_ensemble_config.tree_weights.append(1.0)
        # This is how the weight will look after averaging
        copy_tree = adjusted_tree_ensemble_config.trees.add()
        _append_to_leaf(copy_tree.nodes.add().leaf, 0, -0.4)

        adjusted_tree_ensemble_config.tree_metadata.add().is_finalized = True
        adjusted_tree_ensemble_config.tree_weights.append(
            1.0 * (total_num - i) / total_num)

      # Prepare learner config WITH AVERAGING.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 2
      # We have only 100 trees but we ask to average over 250.
      learner_config.averaging_config.average_last_n_trees = 250

      # No averaging config.
      learner_config_no_averaging = learner_pb2.LearnerConfig()
      learner_config_no_averaging.num_classes = 2

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="existing")

      # This is how our ensemble will "look" during averaging
      adjusted_tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=adjusted_tree_ensemble_config.SerializeToString(
          ),
          name="adjusted")

      resources.initialize_resources(resources.shared_resources()).run()

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config.SerializeToString(),
          apply_averaging=True,
          reduce_dim=True)

      pattern_result, pattern_dropout_info = self._get_predictions(
          adjusted_tree_ensemble_handle,
          learner_config_no_averaging.SerializeToString(),
          apply_averaging=False,
          reduce_dim=True)

      self.assertAllEqual(result.eval(), pattern_result.eval())
      self.assertAllEqual(dropout_info.eval(), pattern_dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:60,代码来源:prediction_ops_test.py


示例6: testBasicQuantileBucketsMultipleResources

  def testBasicQuantileBucketsMultipleResources(self):
    with self.test_session() as sess:
      quantile_accumulator_handle_0 = self.create_resource("float_0", self.eps,
                                                           self.max_elements)
      quantile_accumulator_handle_1 = self.create_resource("float_1", self.eps,
                                                           self.max_elements)
      resources.initialize_resources(resources.shared_resources()).run()
      summaries = boosted_trees_ops.make_quantile_summaries(
          [self._feature_0, self._feature_1], self._example_weights,
          epsilon=self.eps)
      summary_op_0 = boosted_trees_ops.quantile_add_summaries(
          quantile_accumulator_handle_0,
          [summaries[0]])
      summary_op_1 = boosted_trees_ops.quantile_add_summaries(
          quantile_accumulator_handle_1,
          [summaries[1]])
      flush_op_0 = boosted_trees_ops.quantile_flush(
          quantile_accumulator_handle_0, self.num_quantiles)
      flush_op_1 = boosted_trees_ops.quantile_flush(
          quantile_accumulator_handle_1, self.num_quantiles)
      bucket_0 = boosted_trees_ops.get_bucket_boundaries(
          quantile_accumulator_handle_0, num_features=1)
      bucket_1 = boosted_trees_ops.get_bucket_boundaries(
          quantile_accumulator_handle_1, num_features=1)
      quantiles = boosted_trees_ops.boosted_trees_bucketize(
          [self._feature_0, self._feature_1], bucket_0 + bucket_1)
      sess.run([summary_op_0, summary_op_1])
      sess.run([flush_op_0, flush_op_1])
      self.assertAllClose(self._feature_0_boundaries, bucket_0[0].eval())
      self.assertAllClose(self._feature_1_boundaries, bucket_1[0].eval())

      self.assertAllClose(self._feature_0_quantiles, quantiles[0].eval())
      self.assertAllClose(self._feature_1_quantiles, quantiles[1].eval())
开发者ID:AnishShah,项目名称:tensorflow,代码行数:33,代码来源:quantile_ops_test.py


示例7: testCachedPredictionOnEmptyEnsemble

  def testCachedPredictionOnEmptyEnsemble(self):
    """Tests that prediction on a dummy ensemble does not fail."""
    with self.cached_session() as session:
      # Create a dummy ensemble.
      tree_ensemble = boosted_trees_ops.TreeEnsemble(
          'ensemble', serialized_proto='')
      tree_ensemble_handle = tree_ensemble.resource_handle
      resources.initialize_resources(resources.shared_resources()).run()

      # No previous cached values.
      cached_tree_ids = [0, 0]
      cached_node_ids = [0, 0]

      # We have two features: 0 and 1. Values don't matter here on a dummy
      # ensemble.
      feature_0_values = [67, 5]
      feature_1_values = [9, 17]

      # Grow tree ensemble.
      predict_op = boosted_trees_ops.training_predict(
          tree_ensemble_handle,
          cached_tree_ids=cached_tree_ids,
          cached_node_ids=cached_node_ids,
          bucketized_features=[feature_0_values, feature_1_values],
          logits_dimension=1)

      logits_updates, new_tree_ids, new_node_ids = session.run(predict_op)

      # Nothing changed.
      self.assertAllClose(cached_tree_ids, new_tree_ids)
      self.assertAllClose(cached_node_ids, new_node_ids)
      self.assertAllClose([[0], [0]], logits_updates)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:32,代码来源:prediction_ops_test.py


示例8: _testStreamingQuantileBucketsHelper

  def _testStreamingQuantileBucketsHelper(
      self, inputs, num_quantiles=3, expected_buckets=None):
    """Helper to test quantile buckets on different inputs."""

    # set generate_quantiles to True since the test will generate fewer
    # boundaries otherwise.
    with self.test_session() as sess:
      accumulator = quantile_ops.QuantileAccumulator(
          init_stamp_token=0, num_quantiles=num_quantiles,
          epsilon=0.001, name="q1", generate_quantiles=True)
      resources.initialize_resources(resources.shared_resources()).run()
    input_column = array_ops.placeholder(dtypes.float32)
    weights = array_ops.placeholder(dtypes.float32)
    update = accumulator.add_summary(
        stamp_token=0,
        column=input_column,
        example_weights=weights)

    with self.test_session() as sess:
      sess.run(update,
               {input_column: inputs,
                weights: [1] * len(inputs)})

    with self.test_session() as sess:
      sess.run(accumulator.flush(stamp_token=0, next_stamp_token=1))
      are_ready_flush, buckets = (accumulator.get_buckets(stamp_token=1))
      buckets, are_ready_flush = (sess.run(
          [buckets, are_ready_flush]))
      self.assertEqual(True, are_ready_flush)
      # By default, use 3 quantiles, 4 boundaries for simplicity.
      self.assertEqual(num_quantiles + 1, len(buckets))
      if expected_buckets:
        self.assertAllEqual(buckets, expected_buckets)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:33,代码来源:quantile_ops_test.py


示例9: testCreate

  def testCreate(self):
    with self.cached_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      tree = tree_ensemble_config.trees.add()
      _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)
      tree_ensemble_config.tree_weights.append(1.0)

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 2

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=3,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="create_tree")
      resources.initialize_resources(resources.shared_resources()).run()

      result, _ = prediction_ops.gradient_trees_prediction(
          tree_ensemble_handle,
          self._seed, [self._dense_float_tensor], [
              self._sparse_float_indices1, self._sparse_float_indices2
          ], [self._sparse_float_values1, self._sparse_float_values2],
          [self._sparse_float_shape1,
           self._sparse_float_shape2], [self._sparse_int_indices1],
          [self._sparse_int_values1], [self._sparse_int_shape1],
          learner_config=learner_config.SerializeToString(),
          apply_dropout=False,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)
      self.assertAllClose(result.eval(), [[-0.4], [-0.4]])
      stamp_token = model_ops.tree_ensemble_stamp_token(tree_ensemble_handle)
      self.assertEqual(stamp_token.eval(), 3)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:33,代码来源:model_ops_test.py


示例10: testStreamingQuantileBuckets

  def testStreamingQuantileBuckets(self):
    """Sets up the quantile summary op test as follows.

    100 batches of data is added to the accumulator. The batches are in form:
    [0 1 .. 99]
    [100 101 .. 200]
    ...
    [9900 9901 .. 9999]
    All the batches have 1 for all the example weights.
    """
    with self.test_session() as sess:
      accumulator = quantile_ops.QuantileAccumulator(
          init_stamp_token=0, num_quantiles=3, epsilon=0.01, name="q1")
      resources.initialize_resources(resources.shared_resources()).run()
    weight_placeholder = array_ops.placeholder(dtypes.float32)
    dense_placeholder = array_ops.placeholder(dtypes.float32)
    update = accumulator.add_summary(
        stamp_token=0,
        column=dense_placeholder,
        example_weights=weight_placeholder)
    with self.test_session() as sess:
      for i in range(100):
        dense_float = np.linspace(
            i * 100, (i + 1) * 100 - 1, num=100).reshape(-1, 1)
        sess.run(update, {
            dense_placeholder: dense_float,
            weight_placeholder: np.ones(shape=(100, 1), dtype=np.float32)
        })

    with self.test_session() as sess:
      sess.run(accumulator.flush(stamp_token=0, next_stamp_token=1))
      are_ready_flush, buckets = (accumulator.get_buckets(stamp_token=1))
      buckets, are_ready_flush = (sess.run([buckets, are_ready_flush]))
      self.assertEqual(True, are_ready_flush)
      self.assertAllEqual([0, 3335., 6671., 9999.], buckets)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:35,代码来源:quantile_ops_test.py


示例11: testContribsForOnlyABiasNode

  def testContribsForOnlyABiasNode(self):
    """Tests case when, after training, only left with a bias node.

    For example, this could happen if the final ensemble contains one tree that
    got pruned up to the root.
    """
    with self.cached_session() as session:
      tree_ensemble_config = boosted_trees_pb2.TreeEnsemble()
      text_format.Merge(
          """
        trees {
          nodes {
            leaf {
              scalar: 1.72
            }
          }
        }
        tree_weights: 0.1
        tree_metadata: {
          num_layers_grown: 0
        }
      """, tree_ensemble_config)

      tree_ensemble = boosted_trees_ops.TreeEnsemble(
          'ensemble', serialized_proto=tree_ensemble_config.SerializeToString())
      tree_ensemble_handle = tree_ensemble.resource_handle
      resources.initialize_resources(resources.shared_resources()).run()

      # All features are unused.
      feature_0_values = [36, 32]
      feature_1_values = [13, -29]
      feature_2_values = [11, 27]

      # Expected logits are computed by traversing the logit path and
      # subtracting child logits from parent logits.
      bias = 1.72 * 0.1  # Root node of tree_0.
      expected_feature_ids = ((), ())
      expected_logits_paths = ((bias,), (bias,))

      bucketized_features = [
          feature_0_values, feature_1_values, feature_2_values
      ]

      debug_op = boosted_trees_ops.example_debug_outputs(
          tree_ensemble_handle,
          bucketized_features=bucketized_features,
          logits_dimension=1)

      serialized_examples_debug_outputs = session.run(debug_op)
      feature_ids = []
      logits_paths = []
      for example in serialized_examples_debug_outputs:
        example_debug_outputs = boosted_trees_pb2.DebugOutput()
        example_debug_outputs.ParseFromString(example)
        feature_ids.append(example_debug_outputs.feature_ids)
        logits_paths.append(example_debug_outputs.logits_path)

      self.assertAllClose(feature_ids, expected_feature_ids)
      self.assertAllClose(logits_paths, expected_logits_paths)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:59,代码来源:prediction_ops_test.py


示例12: testDropout

  def testDropout(self):
    with self.test_session():
      # Empty tree ensenble.
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Add 1000 trees with some weights.
      for i in range(0, 999):
        tree = tree_ensemble_config.trees.add()
        tree_ensemble_config.tree_metadata.add().is_finalized = True
        _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)
        tree_ensemble_config.tree_weights.append(i + 1)

      # Prepare learner/dropout config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.learning_rate_tuner.dropout.dropout_probability = 0.5
      learner_config.learning_rate_tuner.dropout.learning_rate = 1.0
      learner_config.num_classes = 2

      # Apply dropout.
      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="existing")
      resources.initialize_resources(resources.shared_resources()).run()

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          apply_dropout=True,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)

      # We expect approx 500 trees were dropped.
      dropout_info = dropout_info.eval()
      self.assertIn(dropout_info[0].size, range(400, 601))
      self.assertEqual(dropout_info[0].size, dropout_info[1].size)

      for i in range(dropout_info[0].size):
        dropped_index = dropout_info[0][i]
        dropped_weight = dropout_info[1][i]
        # We constructed the trees so tree number + 1 is the tree weight, so
        # we can check here the weights for dropped trees.
        self.assertEqual(dropped_index + 1, dropped_weight)

      # Don't apply dropout.
      result_no_dropout, no_dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          apply_dropout=False,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)

      self.assertEqual(result.eval().size, result_no_dropout.eval().size)
      for i in range(result.eval().size):
        self.assertNotEqual(result.eval()[i], result_no_dropout.eval()[i])

      # We expect none of the trees were dropped.
      self.assertAllEqual([[], []], no_dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:59,代码来源:prediction_ops_test.py


示例13: testWithExistingEnsembleAndShrinkage

  def testWithExistingEnsembleAndShrinkage(self):
    with self.test_session():
      # Add shrinkage config.
      learning_rate = 0.0001
      tree_ensemble = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Add 10 trees with some weights.
      for i in range(0, 5):
        tree = tree_ensemble.trees.add()
        _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)
        tree_ensemble.tree_weights.append(i + 1)
        meta = tree_ensemble.tree_metadata.add()
        meta.num_tree_weight_updates = 1
      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble.SerializeToString(),
          name="existing")

      # Create non-zero feature importance.
      feature_usage_counts = variables.Variable(
          initial_value=np.array([4, 7], np.int64),
          name="feature_usage_counts",
          trainable=False)
      feature_gains = variables.Variable(
          initial_value=np.array([0.2, 0.8], np.float32),
          name="feature_gains",
          trainable=False)

      resources.initialize_resources(resources.shared_resources()).run()
      variables.initialize_all_variables().run()

      output_ensemble = tree_config_pb2.DecisionTreeEnsembleConfig()
      with ops.control_dependencies([
          ensemble_optimizer_ops.add_trees_to_ensemble(
              tree_ensemble_handle,
              self._ensemble_to_add.SerializeToString(),
              feature_usage_counts, [1, 2],
              feature_gains, [0.5, 0.3], [[], []],
              learning_rate=learning_rate)
      ]):
        output_ensemble.ParseFromString(
            model_ops.tree_ensemble_serialize(tree_ensemble_handle)[1].eval())

      # The weights of previous trees stayed the same, new tree (LAST) is added
      # with shrinkage weight.
      self.assertAllClose([1.0, 2.0, 3.0, 4.0, 5.0, learning_rate],
                          output_ensemble.tree_weights)

      # Check that all number of updates are equal to 1 (e,g, no old tree weight
      # got adjusted.
      for i in range(0, 6):
        self.assertEqual(
            1, output_ensemble.tree_metadata[i].num_tree_weight_updates)

      # Ensure feature importance was aggregated correctly.
      self.assertAllEqual([5, 9], feature_usage_counts.eval())
      self.assertArrayNear(
          [0.2 + 0.5 * learning_rate, 0.8 + 0.3 * learning_rate],
          feature_gains.eval(), 1e-6)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:58,代码来源:ensemble_optimizer_ops_test.py


示例14: testCreate

 def testCreate(self):
   with self.test_session():
     ensemble = boosted_trees_ops.TreeEnsemble('ensemble')
     resources.initialize_resources(resources.shared_resources()).run()
     stamp_token = ensemble.get_stamp_token()
     self.assertEqual(0, stamp_token.eval())
     (_, num_trees, num_finalized_trees,
      num_attempted_layers) = ensemble.get_states()
     self.assertEqual(0, num_trees.eval())
     self.assertEqual(0, num_finalized_trees.eval())
     self.assertEqual(0, num_attempted_layers.eval())
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:11,代码来源:resource_ops_test.py


示例15: testCreate

 def testCreate(self):
   with self.cached_session():
     ensemble = boosted_trees_ops.TreeEnsemble('ensemble')
     resources.initialize_resources(resources.shared_resources()).run()
     stamp_token = ensemble.get_stamp_token()
     self.assertEqual(0, self.evaluate(stamp_token))
     (_, num_trees, num_finalized_trees, num_attempted_layers,
      nodes_range) = ensemble.get_states()
     self.assertEqual(0, self.evaluate(num_trees))
     self.assertEqual(0, self.evaluate(num_finalized_trees))
     self.assertEqual(0, self.evaluate(num_attempted_layers))
     self.assertAllEqual([0, 1], self.evaluate(nodes_range))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:12,代码来源:resource_ops_test.py


示例16: testPredictFn

  def testPredictFn(self):
    """Tests the predict function."""
    with self.test_session() as sess:
      # Create ensemble with one bias node.
      ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      text_format.Merge("""
          trees {
            nodes {
              leaf {
                vector {
                  value: 0.25
                }
              }
            }
          }
          tree_weights: 1.0
          tree_metadata {
            num_tree_weight_updates: 1
            num_layers_grown: 1
            is_finalized: true
          }""", ensemble_config)
      ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=3,
          tree_ensemble_config=ensemble_config.SerializeToString(),
          name="tree_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()
      learner_config = learner_pb2.LearnerConfig()
      learner_config.learning_rate_tuner.fixed.learning_rate = 0.1
      learner_config.num_classes = 2
      learner_config.regularization.l1 = 0
      learner_config.regularization.l2 = 0
      learner_config.constraints.max_tree_depth = 1
      learner_config.constraints.min_node_weight = 0
      features = {}
      features["dense_float"] = array_ops.ones([4, 1], dtypes.float32)
      gbdt_model = gbdt_batch.GradientBoostedDecisionTreeModel(
          is_chief=False,
          num_ps_replicas=0,
          center_bias=True,
          ensemble_handle=ensemble_handle,
          examples_per_layer=1,
          learner_config=learner_config,
          features=features)

      # Create predict op.
      mode = model_fn.ModeKeys.EVAL
      predictions_dict = sess.run(gbdt_model.predict(mode))
      self.assertEquals(predictions_dict["ensemble_stamp"], 3)
      self.assertAllClose(predictions_dict["predictions"], [[0.25], [0.25],
                                                            [0.25], [0.25]])
      self.assertAllClose(predictions_dict["partition_ids"], [0, 0, 0, 0])
开发者ID:chdinh,项目名称:tensorflow,代码行数:51,代码来源:gbdt_batch_test.py


示例17: _init_graph

 def _init_graph(self):
     # Initialize all weights
     if not self._is_initialized:
         self.saver = tf.train.Saver()
         init_vars = tf.group(tf.global_variables_initializer(),
                              resources.initialize_resources(
                                  resources.shared_resources()))
         self.session.run(init_vars)
         self._is_initialized = True
     # Restore weights if needed
     if self._to_be_restored:
         self.saver = tf.train.Saver()
         self.saver.restore(self.session, self._to_be_restored)
         self._to_be_restored = False
开发者ID:EddywardoFTW,项目名称:tflearn,代码行数:14,代码来源:base.py


示例18: testSaveRestoreBeforeFlush

  def testSaveRestoreBeforeFlush(self):
    save_dir = os.path.join(self.get_temp_dir(), "save_restore")
    save_path = os.path.join(tempfile.mkdtemp(prefix=save_dir), "hash")

    with self.test_session(graph=ops.Graph()) as sess:
      accumulator = quantile_ops.QuantileAccumulator(
          init_stamp_token=0, num_quantiles=3, epsilon=0.33, name="q0")

      save = saver.Saver()
      resources.initialize_resources(resources.shared_resources()).run()

      sparse_indices_0 = constant_op.constant(
          [[1, 0], [2, 1], [3, 0], [4, 2], [5, 0]], dtype=dtypes.int64)
      sparse_values_0 = constant_op.constant(
          [2.0, 3.0, 4.0, 5.0, 6.0], dtype=dtypes.float32)
      sparse_shape_0 = constant_op.constant([6, 3], dtype=dtypes.int64)
      example_weights = constant_op.constant(
          [10, 1, 1, 1, 1, 1], dtype=dtypes.float32, shape=[6, 1])
      update = accumulator.add_summary(
          stamp_token=0,
          column=sparse_tensor.SparseTensor(sparse_indices_0, sparse_values_0,
                                            sparse_shape_0),
          example_weights=example_weights)
      update.run()
      save.save(sess, save_path)
      reset = accumulator.flush(stamp_token=0, next_stamp_token=1)
      with ops.control_dependencies([reset]):
        are_ready_flush, buckets = (accumulator.get_buckets(stamp_token=1))
      buckets, are_ready_flush = (sess.run([buckets, are_ready_flush]))
      self.assertEqual(True, are_ready_flush)
      self.assertAllEqual([2, 4, 6.], buckets)

    with self.test_session(graph=ops.Graph()) as sess:
      accumulator = quantile_ops.QuantileAccumulator(
          init_stamp_token=0, num_quantiles=3, epsilon=0.33, name="q0")
      save = saver.Saver()

      # Restore the saved values in the parameter nodes.
      save.restore(sess, save_path)
      are_ready_noflush = accumulator.get_buckets(stamp_token=0)[0]
      with ops.control_dependencies([are_ready_noflush]):
        reset = accumulator.flush(stamp_token=0, next_stamp_token=1)

      with ops.control_dependencies([reset]):
        are_ready_flush, buckets = accumulator.get_buckets(stamp_token=1)
      buckets, are_ready_flush, are_ready_noflush = (sess.run(
          [buckets, are_ready_flush, are_ready_noflush]))
      self.assertFalse(are_ready_noflush)
      self.assertTrue(are_ready_flush)
      self.assertAllEqual([2, 4, 6.], buckets)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:50,代码来源:quantile_ops_test.py


示例19: testMetadataMissing

  def testMetadataMissing(self):
    # Sometimes we want to do prediction on trees that are not added to ensemble
    # (for example in
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Bias tree.
      tree1 = tree_ensemble_config.trees.add()
      _append_to_leaf(tree1.nodes.add().leaf, 0, -0.4)

      # Depth 3 tree.
      tree2 = tree_ensemble_config.trees.add()
      # We are not setting the tree_ensemble_config.tree_metadata in this test.
      _set_float_split(tree2.nodes.add().dense_float_binary_split, 0, 9.0, 1, 2)
      _set_float_split(tree2.nodes.add()
                       .sparse_float_binary_split_default_left.split, 0, -20.0,
                       3, 4)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 0.5)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 1.2)
      _set_categorical_id_split(tree2.nodes.add().categorical_id_binary_split,
                                0, 9, 5, 6)
      _append_to_leaf(tree2.nodes.add().leaf, 0, -0.9)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 0.7)

      tree_ensemble_config.tree_weights.append(1.0)
      tree_ensemble_config.tree_weights.append(1.0)

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="full_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 2

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          reduce_dim=True)

      # The first example will get bias -0.4 from first tree and
      # leaf 4 payload of -0.9 hence -1.3, the second example will
      # get the same bias -0.4 and leaf 3 payload (sparse feature missing)
      # of 1.2 hence 0.8.
      self.assertAllClose([[-1.3], [0.8]], result.eval())

      # Empty dropout.
      self.assertAllEqual([[], []], dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:49,代码来源:prediction_ops_test.py


示例20: run_feeds_iter

def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None):
  """Run `output_dict` tensors with each input in `feed_dicts`.

  If `restore_checkpoint_path` is supplied, restore from checkpoint. Otherwise,
  init all variables.

  Args:
    output_dict: A `dict` mapping string names to `Tensor` objects to run.
      Tensors must all be from the same graph.
    feed_dicts: Iterable of `dict` objects of input values to feed.
    restore_checkpoint_path: A string containing the path to a checkpoint to
      restore.

  Yields:
    A sequence of dicts of values read from `output_dict` tensors, one item
    yielded for each item in `feed_dicts`. Keys are the same as `output_dict`,
    values are the results read from the corresponding `Tensor` in
    `output_dict`.

  Raises:
    ValueError: if `output_dict` or `feed_dicts` is None or empty.
  """
  if not output_dict:
    raise ValueError('output_dict is invalid: %s.' % output_dict)
  if not feed_dicts:
    raise ValueError('feed_dicts is invalid: %s.' % feed_dicts)

  graph = contrib_ops.get_graph_from_inputs(output_dict.values())
  with graph.as_default() as g:
    with tf_session.Session('') as session:
      session.run(
          resources.initialize_resources(resources.shared_resources() +
                                         resources.local_resources()))
      if restore_checkpoint_path:
        _restore_from_checkpoint(session, g, restore_checkpoint_path)
      else:
        session.run(variables.global_variables_initializer())
      session.run(variables.local_variables_initializer())
      session.run(data_flow_ops.initialize_all_tables())
      coord = coordinator.Coordinator()
      threads = None
      try:
        threads = queue_runner.start_queue_runners(session, coord=coord)
        for f in feed_dicts:
          yield session.run(output_dict, f)
      finally:
        coord.request_stop()
        if threads:
          coord.join(threads, stop_grace_period_secs=120)
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:49,代码来源:graph_actions.py



注:本文中的tensorflow.python.ops.resources.shared_resources函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python rnn.dynamic_rnn函数代码示例发布时间:2022-05-27
下一篇:
Python resources.initialize_resources函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap