本文整理汇总了Python中tensorflow.python.ops.resource_variable_ops.assign_variable_op函数的典型用法代码示例。如果您正苦于以下问题:Python assign_variable_op函数的具体用法?Python assign_variable_op怎么用?Python assign_variable_op使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assign_variable_op函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testAssignAdd
def testAssignAdd(self):
with self.test_session():
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
resource_variable_ops.assign_variable_op(handle, constant_op.constant(1, dtype=dtypes.int32)).run()
resource_variable_ops.assign_add_variable_op(handle, constant_op.constant(1, dtype=dtypes.int32)).run()
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
self.assertEqual(read.eval(), 2)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:7,代码来源:resource_variable_ops_test.py
示例2: _custom_getter
def _custom_getter(getter=None, name=None, shape=None, dtype=dtypes.float32, # pylint: disable=missing-docstring
initializer=None, regularizer=None, reuse=None,
trainable=True, collections=None, caching_device=None, # pylint: disable=redefined-outer-name
partitioner=None, validate_shape=True,
use_resource=None):
del getter, regularizer, collections, caching_device, partitioner
del use_resource, validate_shape
if name in self.tf_variables:
if reuse:
return self.tf_variables[name].initialized_value()
else:
raise ValueError("Specified reuse=%s but tried to reuse variables."
% reuse)
# TODO(apassos): ensure this is on the same device as above
v = _CapturedVariable(name, initializer, shape, dtype, trainable)
self.variables[name] = v
graph_mode_resource = resource_variable_ops.var_handle_op(
shared_name=name, shape=shape, dtype=dtype)
if initializer is None:
initializer = _default_initializer(name, shape, dtype)
resource_variable_ops.assign_variable_op(
graph_mode_resource, initializer(shape, dtype))
return _VariableFromResource(
graph_mode_resource, dtype, name, shape=v.shape)
开发者ID:rajeev921,项目名称:tensorflow,代码行数:25,代码来源:graph_callable.py
示例3: assign_fn
def assign_fn():
with ops.name_scope("Assign") as n, ops.colocate_with(self._handle):
resource_variable_ops.assign_variable_op(
self._handle,
initial_value,
name=n)
# Returning values to keep tf.cond happy.
return ops.convert_to_tensor(1)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:8,代码来源:def_function.py
示例4: testDtypeSurvivesIdentity
def testDtypeSurvivesIdentity(self):
with self.test_session():
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
id_handle = array_ops.identity(handle)
resource_variable_ops.assign_variable_op(id_handle,
constant_op.constant(
0,
dtype=dtypes.int32)).run()
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:8,代码来源:resource_variable_ops_test.py
示例5: testCreateRead
def testCreateRead(self):
with self.test_session():
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
resource_variable_ops.assign_variable_op(
handle, constant_op.constant(1, dtype=dtypes.int32)).run()
value = resource_variable_ops.read_variable_op(
handle, dtype=dtypes.int32).eval()
self.assertAllEqual(1, value)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:8,代码来源:resource_variable_ops_test.py
示例6: testScatterAdd
def testScatterAdd(self):
with self.test_session():
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[1, 1])
resource_variable_ops.assign_variable_op(handle, constant_op.constant([[1]], dtype=dtypes.int32)).run()
resource_variable_ops.resource_scatter_add(
handle, [0], constant_op.constant([[2]], dtype=dtypes.int32)
).run()
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
self.assertEqual(read.eval(), [[3]])
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:9,代码来源:resource_variable_ops_test.py
示例7: testReadVariableDtypeMismatchEager
def testReadVariableDtypeMismatchEager(self):
with context.eager_mode():
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.int32, shape=[1], name="foo")
resource_variable_ops.assign_variable_op(handle, 1)
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"Trying to read variable with wrong dtype. "
"Expected float got int32."):
_ = resource_variable_ops.read_variable_op(handle, dtype=dtypes.float32)
开发者ID:aeverall,项目名称:tensorflow,代码行数:9,代码来源:resource_variable_ops_test.py
示例8: testAssignVariableDtypeMismatchEager
def testAssignVariableDtypeMismatchEager(self):
with context.eager_mode():
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.int32, shape=[1], name="foo")
resource_variable_ops.assign_variable_op(
handle, constant_op.constant([1]))
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"Trying to assign variable with wrong "
"dtype. Expected int32 got float."):
resource_variable_ops.assign_variable_op(
handle, constant_op.constant([1.], dtype=dtypes.float32))
开发者ID:aeverall,项目名称:tensorflow,代码行数:11,代码来源:resource_variable_ops_test.py
示例9: testManyAssigns
def testManyAssigns(self):
with self.test_session() as session:
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
create = resource_variable_ops.assign_variable_op(handle, constant_op.constant(1, dtype=dtypes.int32))
with ops.control_dependencies([create]):
first_read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
with ops.control_dependencies([first_read]):
write = resource_variable_ops.assign_variable_op(handle, constant_op.constant(2, dtype=dtypes.int32))
with ops.control_dependencies([write]):
second_read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
f, s = session.run([first_read, second_read])
self.assertEqual(f, 1)
self.assertEqual(s, 2)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:13,代码来源:resource_variable_ops_test.py
示例10: testCreateRead
def testCreateRead(self):
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
self.evaluate(resource_variable_ops.assign_variable_op(
handle, constant_op.constant(1, dtype=dtypes.int32)))
value = self.evaluate(
resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32))
self.assertAllEqual(1, value)
开发者ID:aeverall,项目名称:tensorflow,代码行数:7,代码来源:resource_variable_ops_test.py
示例11: testAssignAdd
def testAssignAdd(self):
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
self.evaluate(resource_variable_ops.assign_variable_op(
handle, constant_op.constant(1, dtype=dtypes.int32)))
self.evaluate(resource_variable_ops.assign_add_variable_op(
handle, constant_op.constant(1, dtype=dtypes.int32)))
read = self.evaluate(
resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32))
self.assertEqual(read, 2)
开发者ID:aeverall,项目名称:tensorflow,代码行数:9,代码来源:resource_variable_ops_test.py
示例12: testScatterAdd
def testScatterAdd(self):
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.int32, shape=[1, 1])
self.evaluate(resource_variable_ops.assign_variable_op(
handle, constant_op.constant([[1]], dtype=dtypes.int32)))
self.evaluate(resource_variable_ops.resource_scatter_add(
handle, [0], constant_op.constant([[2]], dtype=dtypes.int32)))
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
self.assertEqual(self.evaluate(read), [[3]])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:9,代码来源:resource_variable_ops_test.py
示例13: testScatterUpdateString
def testScatterUpdateString(self):
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.string, shape=[1, 1])
self.evaluate(resource_variable_ops.assign_variable_op(
handle, constant_op.constant([["a"]], dtype=dtypes.string)))
self.evaluate(resource_variable_ops.resource_scatter_update(
handle, [0], constant_op.constant([["b"]], dtype=dtypes.string)))
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.string)
self.assertEqual(compat.as_bytes(self.evaluate(read)[0][0]),
compat.as_bytes("b"))
开发者ID:aeverall,项目名称:tensorflow,代码行数:10,代码来源:resource_variable_ops_test.py
示例14: testScatterDiv
def testScatterDiv(self):
with self.test_session() as sess, self.test_scope():
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.int32, shape=[1, 1])
sess.run(
resource_variable_ops.assign_variable_op(
handle, constant_op.constant([[6]], dtype=dtypes.int32)))
sess.run(
resource_variable_ops.resource_scatter_div(
handle, [0], constant_op.constant([[3]], dtype=dtypes.int32)))
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
self.assertAllEqual(sess.run(read), [[2]])
开发者ID:AnishShah,项目名称:tensorflow,代码行数:12,代码来源:variable_ops_test.py
示例15: testScatterMaxScalar
def testScatterMaxScalar(self):
with self.test_session() as sess, self.test_scope():
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.int32, shape=[1, 1])
sess.run(
resource_variable_ops.assign_variable_op(
handle, constant_op.constant([[6]], dtype=dtypes.int32)))
sess.run(
resource_variable_ops.resource_scatter_max(
handle, [0], constant_op.constant(3, dtype=dtypes.int32)))
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
self.assertEqual(self.evaluate(read), [[6]])
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:12,代码来源:variable_ops_test.py
示例16: testScatterSub
def testScatterSub(self):
with self.test_session() as sess, self.test_scope():
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.int32, shape=[2, 1])
sess.run(
resource_variable_ops.assign_variable_op(
handle, constant_op.constant([[4], [1]], dtype=dtypes.int32)))
sess.run(
resource_variable_ops.resource_scatter_sub(
handle, [1], constant_op.constant([[2]], dtype=dtypes.int32)))
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
self.assertAllEqual(self.evaluate(read), [[4], [-1]])
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:12,代码来源:variable_ops_test.py
示例17: testHandleDtypeShapeMatch
def testHandleDtypeShapeMatch(self):
with self.test_session():
handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
with self.assertRaises(ValueError):
resource_variable_ops.assign_variable_op(handle, constant_op.constant(0.0, dtype=dtypes.float32)).run()
with self.assertRaises(ValueError):
resource_variable_ops.assign_variable_op(handle, constant_op.constant([0], dtype=dtypes.int32)).run()
resource_variable_ops.assign_variable_op(handle, constant_op.constant(0, dtype=dtypes.int32)).run()
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:8,代码来源:resource_variable_ops_test.py
示例18: testScatterNdAddOps
def testScatterNdAddOps(self):
with self.test_session() as sess, self.test_scope():
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.float32, shape=[8])
sess.run(
resource_variable_ops.assign_variable_op(
handle, constant_op.constant([1] * 8, dtype=dtypes.float32)))
indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32)
updates = constant_op.constant([9, 10, 11, 12], dtype=dtypes.float32)
expected = np.array([1, 12, 1, 11, 10, 1, 1, 13])
sess.run(gen_state_ops.resource_scatter_nd_add(handle, indices, updates))
read = resource_variable_ops.read_variable_op(
handle, dtype=dtypes.float32)
self.assertAllClose(expected, self.evaluate(read))
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:14,代码来源:variable_ops_test.py
示例19: testScatterMin
def testScatterMin(self):
with ops.device("cpu:0"):
handle = resource_variable_ops.var_handle_op(
dtype=dtypes.int32, shape=[1, 1])
self.evaluate(
resource_variable_ops.assign_variable_op(handle,
constant_op.constant(
[[6]],
dtype=dtypes.int32)))
self.evaluate(
resource_variable_ops.resource_scatter_min(handle, [0],
constant_op.constant(
[[3]],
dtype=dtypes.int32)))
read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)
self.assertEqual(self.evaluate(read), [[3]])
开发者ID:aeverall,项目名称:tensorflow,代码行数:16,代码来源:resource_variable_ops_test.py
示例20: __init__
#.........这里部分代码省略.........
init_from_fn = callable(initial_value)
if constraint is not None and not callable(constraint):
raise ValueError("The `constraint` argument must be a callable.")
if isinstance(initial_value, trackable.CheckpointInitialValue):
self._maybe_initialize_trackable()
self._update_uid = initial_value.checkpoint_position.restore_uid
initial_value = initial_value.wrapped_value
if trainable is None:
trainable = True
self._trainable = trainable
self._save_slice_info = None
self._initial_value = None
self._initializer_op = None
self._is_initialized_op = None
self._graph_element = None
self._cached_value = None
# Store the graph key so optimizers know how to only retrieve variables from
# this graph. Guaranteed to be the same as the eager graph_key.
self._graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access
with ops.name_scope(name, "Variable", []
if init_from_fn else [initial_value]) as name:
# pylint: disable=protected-access
with ops.init_scope():
handle_name = ops._name_from_scope_name(name)
unique_id = "%s_%d" % (handle_name, ops.uid())
shared_name = context.shared_name(unique_id)
with ops.name_scope("Initializer"), ops.device(None):
initial_value = ops.convert_to_tensor(
initial_value() if init_from_fn else initial_value,
name="initial_value", dtype=dtype)
with ops.init_scope():
self._handle = resource_variable_ops.eager_safe_variable_handle(
initial_value=initial_value,
shared_name=shared_name,
name=name,
graph_mode=self._in_graph_mode)
self._shape = initial_value.shape
self._unique_id = unique_id
self._handle_name = handle_name + ":0"
self._dtype = initial_value.dtype.base_dtype
self._constraint = constraint
assert initial_value is not None
if self._in_graph_mode:
with ops.init_scope():
outer_graph = ops.get_default_graph()
func_graph = ops.get_default_graph()
function_placeholders = (
func_graph.inputs + func_graph.internal_captures)
placeholder_ops = set(
[tensor.op for tensor in function_placeholders])
lifted_initializer = lift_to_graph.lift_to_graph(
[initial_value], outer_graph,
disallowed_placeholders=placeholder_ops)[initial_value]
with ops.init_scope():
self._initial_value = lifted_initializer
with ops.name_scope("IsInitialized"):
self._is_initialized_op = (
resource_variable_ops.var_is_initialized_op(self._handle))
if initial_value is not None:
with ops.name_scope("Assign") as n, ops.colocate_with(self._handle):
self._initializer_op = resource_variable_ops.assign_variable_op(
self._handle, lifted_initializer, name=n)
with ops.name_scope("Read"), ops.colocate_with(self._handle):
# Manually assign reads to the handle's device to avoid log
# messages.
with ops.device(self._handle.device):
value = self._read_variable_op()
self._graph_element = value
ops.add_to_collection(ops.GraphKeys.GLOBAL_VARIABLES, self)
else:
if add_initializers_to is not None:
add_initializers_to[self] = initial_value
def assign_fn():
with ops.name_scope("Assign") as n, ops.colocate_with(self._handle):
resource_variable_ops.assign_variable_op(
self._handle,
initial_value,
name=n)
# Returning values to keep tf.cond happy.
return ops.convert_to_tensor(1)
def not_assign_fn():
return ops.convert_to_tensor(0)
# Note: this cond is always guaranteed to run because we're inside a
# defun which will insert automatic control dependencies.
control_flow_ops.cond(
resource_variable_ops.var_is_initialized_op(self._handle),
not_assign_fn, assign_fn)
# After the handle has been created, set up a way to clean it up when
# executing eagerly. We'll hold the only reference to the deleter, so that
# when this object is garbage collected the deleter will be too. This
# means ResourceVariables can be part of reference cycles without those
# cycles being uncollectable.
if not self._in_graph_mode:
self._handle_deleter = resource_variable_ops.EagerResourceDeleter(
handle=self._handle, handle_device=self._handle.device)
self._cached_shape_as_list = None
开发者ID:kylin9872,项目名称:tensorflow,代码行数:101,代码来源:def_function.py
注:本文中的tensorflow.python.ops.resource_variable_ops.assign_variable_op函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论