• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python random_ops.random_normal函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.random_ops.random_normal函数的典型用法代码示例。如果您正苦于以下问题:Python random_normal函数的具体用法?Python random_normal怎么用?Python random_normal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了random_normal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testOOM

  def testOOM(self):
    if not test.is_gpu_available():
      return
    ops.reset_default_graph()
    with ops.device('/device:GPU:0'):
      a = random_ops.random_normal([1, 10000, 20000], name='test_random1')
      b = random_ops.random_normal([30000, 10000, 1], name='test_random2')
      c = a * b

    try:
      with session.Session() as sess:
        sess.run(c, options=config_pb2.RunOptions(
            report_tensor_allocations_upon_oom=True))
    except Exception as e:  # pylint: disable=broad-except
      exception_str = '%s' % e
      # This trace reports allocations for to random tensor.
      self.assertTrue(
          'OOM when allocating tensor with shape[30000,10000,20000]' in
          exception_str)
      mat = re.search('(.*)GiB from test_random2/RandomStandardNormal',
                      exception_str)
      self.assertGreater(float(mat.group(1)), 0.0)
      mat = re.search('(.*)MiB from test_random1/RandomStandardNormal',
                      exception_str)
      self.assertGreater(float(mat.group(1)), 0.0)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:25,代码来源:model_analyzer_test.py


示例2: random_normal

def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None):
  """Tensor with (possibly complex) Gaussian entries.

  Samples are distributed like

  ```
  N(mean, stddev^2), if dtype is real,
  X + iY,  where X, Y ~ N(mean, stddev^2) if dtype is complex.
  ```

  Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    mean:  `Tensor` giving mean of normal to sample from.
    stddev:  `Tensor` giving stdev of normal to sample from.
    dtype:  `TensorFlow` `dtype` or numpy dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_normal"):
    samples = random_ops.random_normal(
        shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
    if dtype.is_complex:
      if seed is not None:
        seed += 1234
      more_samples = random_ops.random_normal(
          shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
      samples = math_ops.complex(samples, more_samples)
    return samples
开发者ID:Joetz,项目名称:tensorflow,代码行数:32,代码来源:linear_operator_test_util.py


示例3: testDistributedOOM

  def testDistributedOOM(self):
    if not test.is_gpu_available():
      return
    ops.reset_default_graph()

    workers, _ = test_util.create_local_cluster(2, 0)

    with ops.device('/job:worker/replica:0/task:0/gpu:0'):
      a = random_ops.random_normal([1, 10000, 20000], name='test_random1')
    with ops.device('/job:worker/replica:0/task:1/gpu:0'):
      b = random_ops.random_normal([30000, 10000, 1], name='test_random2')
      c = a * b

    try:
      with session.Session(workers[1].target) as sess:
        sess.run(c, options=config_pb2.RunOptions(
            report_tensor_allocations_upon_oom=True))
    except Exception as e:  # pylint: disable=broad-except
      exception_str = '%s' % e
      # test_random2 is reported because it's allocated in worker 1.
      self.assertTrue('Current usage from device: '
                      '/job:worker/replica:0/task:1/device:GPU:0, '
                      'allocator: GPU_0_bfc' in exception_str)
      mat = re.search('(.*)GiB from test_random2/RandomStandardNormal',
                      exception_str)
      self.assertGreater(float(mat.group(1)), 0.0)
      # test_random1 is not reported because it's allocated in worker 0.
      mat = re.search('(.*)MiB from test_random1/RandomStandardNormal',
                      exception_str)
      self.assertTrue(mat is None)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:30,代码来源:model_analyzer_test.py


示例4: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   with self.test_session(use_gpu=True) as sess:
     all_ops = []
     for compute_uv_ in True, False:
       for full_matrices_ in True, False:
         matrix1 = random_ops.random_normal([5, 5], seed=42)
         matrix2 = random_ops.random_normal([5, 5], seed=42)
         if compute_uv_:
           s1, u1, v1 = linalg_ops.svd(
               matrix1, compute_uv=compute_uv_, full_matrices=full_matrices_)
           s2, u2, v2 = linalg_ops.svd(
               matrix2, compute_uv=compute_uv_, full_matrices=full_matrices_)
           all_ops += [s1, u1, v1, s2, u2, v2]
         else:
           s1 = linalg_ops.svd(
               matrix1, compute_uv=compute_uv_, full_matrices=full_matrices_)
           s2 = linalg_ops.svd(
               matrix2, compute_uv=compute_uv_, full_matrices=full_matrices_)
           all_ops += [s1, s2]
     val = sess.run(all_ops)
     for i in range(2):
       s = 6 * i
       self.assertAllEqual(val[s], val[s + 3])  # s1 == s2
       self.assertAllEqual(val[s + 1], val[s + 4])  # u1 == u2
       self.assertAllEqual(val[s + 2], val[s + 5])  # v1 == v2
     for i in range(2):
       s = 12 + 2 * i
       self.assertAllEqual(val[s], val[s + 1])  # s1 == s2
开发者ID:AnddyWang,项目名称:tensorflow,代码行数:28,代码来源:svd_op_test.py


示例5: test_virtual_statistics

  def test_virtual_statistics(self):
    """Check that `_virtual_statistics` gives same result as `nn.moments`."""
    random_seed.set_random_seed(1234)

    batch_axis = 0
    partial_batch = random_ops.random_normal([4, 5, 7, 3])
    single_example = random_ops.random_normal([1, 5, 7, 3])
    full_batch = array_ops.concat([partial_batch, single_example], axis=0)

    for reduction_axis in range(1, 4):
      # Get `nn.moments` on the full batch.
      reduction_axes = list(range(4))
      del reduction_axes[reduction_axis]
      mom_mean, mom_variance = nn.moments(full_batch, reduction_axes)

      # Get virtual batch statistics.
      vb_reduction_axes = list(range(4))
      del vb_reduction_axes[reduction_axis]
      del vb_reduction_axes[batch_axis]
      vbn = virtual_batchnorm.VBN(partial_batch, reduction_axis)
      vb_mean, mean_sq = vbn._virtual_statistics(
          single_example, vb_reduction_axes)
      vb_variance = mean_sq - math_ops.square(vb_mean)
      # Remove singleton batch dim for easy comparisons.
      vb_mean = array_ops.squeeze(vb_mean, batch_axis)
      vb_variance = array_ops.squeeze(vb_variance, batch_axis)

      with self.cached_session(use_gpu=True) as sess:
        vb_mean_np, vb_var_np, mom_mean_np, mom_var_np = sess.run([
            vb_mean, vb_variance, mom_mean, mom_variance])

      self.assertAllClose(mom_mean_np, vb_mean_np)
      self.assertAllClose(mom_var_np, vb_var_np)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:33,代码来源:virtual_batchnorm_test.py


示例6: testMultiplyInverseTuple

  def testMultiplyInverseTuple(self):
    with ops.Graph().as_default(), self.test_session() as sess:
      random_seed.set_random_seed(200)
      params = random_ops.random_normal((2, 2, 2, 2))
      inputs = random_ops.random_normal((2, 2, 2, 2))
      outputs = random_ops.random_normal((2, 2, 2, 2))
      block = fb.ConvKFCBasicFB(lc.LayerCollection(), params, (1, 1, 1, 1),
                                'SAME')
      block.register_additional_minibatch(inputs, outputs)
      grads = outputs**2
      block.instantiate_factors(([grads],), 0.5)

      # Make sure our inverse is something other than the identity.
      sess.run(tf_variables.global_variables_initializer())
      sess.run(block._input_factor.make_inverse_update_ops())
      sess.run(block._output_factor.make_inverse_update_ops())

      vector = (np.arange(1, 15).reshape(7, 2).astype(np.float32),
                np.arange(2, 4).reshape(2, 1).astype(np.float32))
      output = block.multiply_inverse((array_ops.constant(vector[0]),
                                       array_ops.constant(vector[1])))

      output = sess.run(output)
      self.assertAllClose([0.136455, 0.27291], output[0][0])
      self.assertAllClose([0.27291, 0.409365], output[1])
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:25,代码来源:fisher_blocks_test.py


示例7: approximate_hessian

 def approximate_hessian(self, grads_and_vars, name=None):
   """
   I haven't tested this yet so I have no idea if it works, but even if it
   does it's probably super slow, and either way nothing else has been modified
   to deal with it.
   """
   
   gv = 0
   var_refs = []
   for g_t, x_tm1 in grads_and_vars:
     var_refs.append(x_tm1.ref())
     if g_t is None:
       continue
     with ops.name_scope('update_' + x_tm1.op.name), ops.device(x_tm1.device):
       if isinstance(g_t, ops.Tensor):
         gv += math_ops.reduce_sum(g_t * random_ops.random_normal(g_t.get_shape()))
       else:
         idxs, idxs_ = array_ops.unique(g_t.indices)
         g_t_ = math_ops.unsorted_segment_sum(g_t.values, idxs_, array_ops.size(idxs))
         gv += math_ops.reduce_sum(g_t_ * random_ops.random_normal(g_t_.get_shape()))
   hesses = gradients.gradients(gv, var_refs,
                                gate_gradients=(gate_gradients == Optimizer.GATE_OP),
                                aggregation_method=aggregation_method,
                                colocate_gradients_with_ops=colocate_gradients_with_ops)
   return zip([g_t for g_t, _ in grads_and_vars], [x_tm1 for _, x_tm1 in grads_and_vars], hesses)
开发者ID:tdozat,项目名称:Optimization,代码行数:25,代码来源:optimizers.py


示例8: testMultiplyInverseNotTupleWithBias

  def testMultiplyInverseNotTupleWithBias(self):
    with ops.Graph().as_default(), self.test_session() as sess:
      random_seed.set_random_seed(200)
      params = [random_ops.random_normal((2, 2, 2, 2))]
      inputs = random_ops.random_normal((2, 2, 2, 2))
      outputs = random_ops.random_normal((2, 2, 2, 2))
      block = fb.ConvKFCBasicFB(lc.LayerCollection(), params, (1, 1, 1, 1),
                                'SAME')
      block.register_additional_minibatch(inputs, outputs)
      self.assertTrue(block._has_bias)
      grads = outputs**2
      block.instantiate_factors(((grads,),), 0.5)
      block._input_factor.instantiate_cov_variables()
      block._output_factor.instantiate_cov_variables()
      block.register_inverse()
      block._input_factor.instantiate_inv_variables()
      block._output_factor.instantiate_inv_variables()

      # Make sure our inverse is something other than the identity.
      sess.run(tf_variables.global_variables_initializer())
      sess.run(block._input_factor.make_inverse_update_ops())
      sess.run(block._output_factor.make_inverse_update_ops())

      vector = np.arange(1, 19).reshape(9, 2).astype(np.float32)
      output = block.multiply_inverse(array_ops.constant(vector))

      self.assertAllClose([0.136455, 0.27291], sess.run(output)[0])
开发者ID:DILASSS,项目名称:tensorflow,代码行数:27,代码来源:fisher_blocks_test.py


示例9: _run_model

def _run_model():
  x = random_ops.random_normal(shape=[1, SIZE])
  w = random_ops.random_normal(shape=[SIZE, 2 * SIZE])
  y = math_ops.matmul(x, w)

  config = config_pb2.ConfigProto()
  config.graph_options.rewrite_options.arithmetic_optimization = (
      rewriter_config_pb2.RewriterConfig.OFF)
  with session.Session(config=config) as sess:
    run_metadata = config_pb2.RunMetadata()
    opts = builder.time_and_memory()
    opts['min_micros'] = 0
    opts['min_bytes'] = 0
    opts['order_by'] = 'name'
    opts['output'] = 'none'
    _ = sess.run(y,
                 options=config_pb2.RunOptions(
                     trace_level=config_pb2.RunOptions.FULL_TRACE),
                 run_metadata=run_metadata)
    tfprof_node = model_analyzer.profile(
        sess.graph,
        run_meta=run_metadata,
        options=opts)

    return tfprof_node, run_metadata
开发者ID:aeverall,项目名称:tensorflow,代码行数:25,代码来源:run_metadata_test.py


示例10: testMultiplyInverse

  def testMultiplyInverse(self):
    with ops.Graph().as_default(), self.test_session() as sess:
      random_seed.set_random_seed(200)
      params = random_ops.random_normal((3, 3, 8, 2))
      inputs = random_ops.random_normal((32, 5, 5, 8))
      outputs = random_ops.random_normal((32, 5, 5, 16))
      layer_collection = lc.LayerCollection()
      block = fb.DepthwiseConvKFCBasicFB(
          layer_collection, params=params, strides=[1, 1, 1, 1], padding='SAME')
      block.register_additional_tower(inputs, outputs)
      grads = outputs**2
      block.instantiate_factors(([grads],), 0.5)
      block._input_factor.instantiate_cov_variables()
      block._output_factor.instantiate_cov_variables()
      block.register_inverse()
      block._input_factor.instantiate_inv_variables()
      block._output_factor.instantiate_inv_variables()

      # Ensure inverse update op doesn't crash.
      sess.run(tf_variables.global_variables_initializer())
      sess.run([
          factor.make_inverse_update_ops()
          for factor in layer_collection.get_factors()
      ])

      # Ensure inverse-vector multiply doesn't crash.
      output = block.multiply_inverse(params)
      sess.run(output)

      # Ensure same shape.
      self.assertAllEqual(output.shape, params.shape)
开发者ID:bikong2,项目名称:tensorflow,代码行数:31,代码来源:fisher_blocks_test.py


示例11: test_optimize

  def test_optimize(self):
    scalar = variables.Variable(random_ops.random_normal([]), 'scalar')
    vector = variables.Variable(random_ops.random_normal([2]), 'vector')
    matrix = variables.Variable(random_ops.random_normal([2, 3]), 'matrix')

    minimum_location = constant_op.constant(np.arange(9), dtype=dtypes.float32)

    loss = math_ops.reduce_sum(
        math_ops.square(vector - minimum_location[:2])) / 2.
    loss += math_ops.reduce_sum(
        math_ops.square(scalar - minimum_location[2])) / 2.
    loss += math_ops.reduce_sum(
        math_ops.square(
            matrix - array_ops.reshape(minimum_location[3:], [2, 3]))) / 2.

    optimizer = MockOptimizerInterface(loss)

    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())

      optimizer.minimize(sess)

      self.assertAllClose(np.arange(2), sess.run(vector))
      self.assertAllClose(np.arange(1) + 2, sess.run(scalar))
      self.assertAllClose(np.arange(6).reshape(2, 3) + 3, sess.run(matrix))
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:25,代码来源:external_optimizer_test.py


示例12: _testSimpleModel

  def _testSimpleModel(self, use_forward_func, use_resource=False):

    def _Model(x):
      w = variable_scope.get_variable(
          "w", (64, 64),
          initializer=init_ops.random_uniform_initializer(seed=312),
          use_resource=use_resource)
      b = variable_scope.get_variable(
          "b", (64),
          initializer=init_ops.zeros_initializer(),
          use_resource=use_resource),
      return math_ops.sigmoid(math_ops.matmul(x, w) + b)

    @function.Defun()
    def Model(x):
      return _Model(x)

    cvars = []

    @function.Defun()
    def Grad(x, y0):
      if use_forward_func:
        y = Model(x)
      else:
        y = _Model(x)
      loss = math_ops.reduce_mean(
          math_ops.reduce_sum(y0 * math_ops.log(y), 1), 0)
      arg_w, arg_b = function.get_extra_args()
      self.assertEqual(arg_w.get_shape(), tensor_shape.TensorShape([64, 64]))
      self.assertEqual(arg_b.get_shape(), tensor_shape.TensorShape([64]))
      dw, db = gradients_impl.gradients(loss, [arg_w, arg_b])
      cvars.extend(function.get_extra_vars())
      return loss, dw, db

    g = ops.Graph()
    with g.as_default():
      x = random_ops.random_normal([64, 64], seed=100)
      y0 = random_ops.random_normal([64, 64], seed=200)
      with variable_scope.variable_scope("Foo"):
        loss, dw, db = Grad(x, y0)

    self.assertEqual(2, len(cvars))
    w, b = cvars[:2]
    self.assertEqual("Foo/w", w.op.name)
    self.assertEqual("Foo/b", b.op.name)

    with self.test_session(graph=g) as sess:
      sess.run(variables.global_variables_initializer())
      w, b, x, y0, loss, dw, db = sess.run([w, b, x, y0, loss, dw, db])

    self.assertAllEqual(w.shape, (64, 64))
    self.assertAllClose(np.sum(w), 2050.44)
    self.assertAllEqual(b.shape, (64,))
    self.assertAllClose(np.sum(b), 0.0)
    self.assertAllClose(loss, -2.27, rtol=1e-2)
    self.assertAllEqual(dw.shape, (64, 64))
    self.assertAllClose(np.sum(dw), -1.04, rtol=1e-2)
    self.assertAllEqual(db.shape, (64,))
    self.assertAllClose(np.sum(db), 0.509, rtol=1e-2)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:59,代码来源:function_test.py


示例13: testNoCSE

 def testNoCSE(self):
   for use_gpu in [False, True]:
     with self.test_session(use_gpu=use_gpu):
       shape = [2, 3, 4]
       rnd1 = random_ops.random_normal(shape, 0.0, 1.0, dtypes.float32)
       rnd2 = random_ops.random_normal(shape, 0.0, 1.0, dtypes.float32)
       diff = rnd2 - rnd1
       self.assertTrue(np.linalg.norm(diff.eval()) > 0.1)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:8,代码来源:random_ops_test.py


示例14: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   matrix1 = random_ops.random_normal([5, 5], seed=42)
   matrix2 = random_ops.random_normal([5, 5], seed=42)
   lu1, p1 = linalg_ops.lu(matrix1)
   lu2, p2 = linalg_ops.lu(matrix2)
   lu1_val, p1_val, lu2_val, p2_val = self.evaluate([lu1, p1, lu2, p2])
   self.assertAllEqual(lu1_val, lu2_val)
   self.assertAllEqual(p1_val, p2_val)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:8,代码来源:lu_op_test.py


示例15: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   with self.test_session(use_gpu=True) as sess:
     matrix1 = random_ops.random_normal([5, 5], seed=42)
     matrix2 = random_ops.random_normal([5, 5], seed=42)
     expm1 = linalg_impl.matrix_exponential(matrix1)
     expm2 = linalg_impl.matrix_exponential(matrix2)
     expm = sess.run([expm1, expm2])
     self.assertAllEqual(expm[0], expm[1])
开发者ID:AnishShah,项目名称:tensorflow,代码行数:8,代码来源:matrix_exponential_op_test.py


示例16: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   with self.session(use_gpu=True) as sess:
     matrix1 = random_ops.random_normal([5, 5], seed=42)
     matrix2 = random_ops.random_normal([5, 5], seed=42)
     det1 = linalg_ops.matrix_determinant(matrix1)
     det2 = linalg_ops.matrix_determinant(matrix2)
     det1_val, det2_val = sess.run([det1, det2])
     self.assertEqual(det1_val, det2_val)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:8,代码来源:determinant_op_test.py


示例17: testTransposedStatistics

 def testTransposedStatistics(self):
   a = variables.Variable(random_ops.random_normal([16, 25]))
   b = variables.Variable(random_ops.random_normal([16, 9]))
   math_ops.matmul(a, b, transpose_a=True)
   g = ops.get_default_graph()
   for op in g.get_operations():
     flops = ops.get_stats_for_node_def(g, op.node_def, "flops").value
     if op.name == "MatMul":
       self.assertEqual(7200, flops)
开发者ID:aeverall,项目名称:tensorflow,代码行数:9,代码来源:matmul_op_test.py


示例18: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   with self.test_session(use_gpu=True) as sess:
     matrix1 = random_ops.random_normal([5, 5], seed=42)
     matrix2 = random_ops.random_normal([5, 5], seed=42)
     sqrt1 = gen_linalg_ops.matrix_square_root(matrix1)
     sqrt2 = gen_linalg_ops.matrix_square_root(matrix2)
     all_ops = [sqrt1, sqrt2]
     sqrt = sess.run(all_ops)
     self.assertAllEqual(sqrt[0], sqrt[1])
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:9,代码来源:matrix_square_root_op_test.py


示例19: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   with self.session(use_gpu=True) as sess:
     matrix1 = math_ops.cast(
         random_ops.random_normal([5, 5], seed=42), dtypes.complex64)
     matrix2 = math_ops.cast(
         random_ops.random_normal([5, 5], seed=42), dtypes.complex64)
     logm1 = gen_linalg_ops.matrix_logarithm(matrix1)
     logm2 = gen_linalg_ops.matrix_logarithm(matrix2)
     logm = sess.run([logm1, logm2])
     self.assertAllEqual(logm[0], logm[1])
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:10,代码来源:matrix_logarithm_op_test.py


示例20: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   with self.test_session(use_gpu=True) as sess:
     matrix1 = random_ops.random_normal([5, 5], seed=42)
     matrix2 = random_ops.random_normal([5, 5], seed=42)
     matrix1 = math_ops.matmul(matrix1, matrix1, adjoint_a=True)
     matrix2 = math_ops.matmul(matrix2, matrix2, adjoint_a=True)
     c1 = linalg_ops.cholesky(matrix1)
     c2 = linalg_ops.cholesky(matrix2)
     c1_val, c2_val = sess.run([c1, c2])
     self.assertAllEqual(c1_val, c2_val)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:10,代码来源:cholesky_op_test.py



注:本文中的tensorflow.python.ops.random_ops.random_normal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python random_ops.random_poisson函数代码示例发布时间:2022-05-27
下一篇:
Python random_ops.random_gamma函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap