• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python ragged_tensor.is_ragged函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.ragged.ragged_tensor.is_ragged函数的典型用法代码示例。如果您正苦于以下问题:Python is_ragged函数的具体用法?Python is_ragged怎么用?Python is_ragged使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了is_ragged函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _broadcast_elementwise_args

def _broadcast_elementwise_args(elementwise_args):
  """Broadcasts the values of `elementwise_args` to have compatible shapes.

  Args:
    elementwise_args: A dictionary whose keys are potentially ragged tensors.

  Returns:
    A tuple `(broadcast_args, broadcast_splits, checks)` where:

    * `broadcast_args` is a dictionary with the same keys as
      `elementwise_args`, mapping to broadcasted tensors.
    * `broadcast_splits` is the broadcasted nested row splits.
    * `checks` is a possibly empty tuple of assertion operations that should
      be added as control dependencies.

  Raises:
    ValueError: If broadcasting fails.
  """
  # No elementwise arguments were used: nothing to do!
  if not elementwise_args:
    return elementwise_args, (), ()

  # A single elementwise argument was used: no broadcasting necessary.
  if len(elementwise_args) == 1:
    arg = list(elementwise_args.values())[0]
    if ragged_tensor.is_ragged(arg):
      return elementwise_args, arg.nested_row_splits, ()
    else:
      return elementwise_args, (), ()

  # Multiple elementwise arguments.
  else:
    is_ragged = [ragged_tensor.is_ragged(t) for t in elementwise_args.values()]
    if not any(is_ragged):
      return elementwise_args, (), ()

    # Support limited broadcasting (namely, scalar + ragged).  Full
    # broadcasting support will be added later.
    if all((ragged_tensor.is_ragged(t) or t.shape.ndims == 0)
           for t in elementwise_args.values()):
      nested_splits_lists = [
          t.nested_row_splits
          for t in elementwise_args.values()
          if ragged_tensor.is_ragged(t)
      ]
      if len(nested_splits_lists) == 1:
        checks = ()
      else:
        if any(t.shape.ndims is None for t in elementwise_args.values()):
          raise ValueError('Ragged elementwise ops require that rank (number '
                           'of dimensions) be statically known.')
        if len(set(t.shape.ndims for t in elementwise_args.values())) != 1:
          raise ValueError('Ragged elementwise ops do not support '
                           'broadcasting yet')
        checks = ragged_util.assert_splits_match(nested_splits_lists)
      return (elementwise_args, nested_splits_lists[0], checks)
    else:
      raise ValueError('Ragged elementwise ops do not support broadcasting yet')
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:58,代码来源:ragged_elementwise_ops.py


示例2: assertRaggedAlmostEqual

  def assertRaggedAlmostEqual(self, a, b, places=7):
    a_list = self._GetPyList(a)
    b_list = self._GetPyList(b)
    self.assertNestedListAlmostEqual(a_list, b_list, places, context='value')

    if not (isinstance(a, (list, tuple)) or isinstance(b, (list, tuple))):
      a_ragged_rank = a.ragged_rank if ragged_tensor.is_ragged(a) else 0
      b_ragged_rank = b.ragged_rank if ragged_tensor.is_ragged(b) else 0
      self.assertEqual(a_ragged_rank, b_ragged_rank)
开发者ID:aritratony,项目名称:tensorflow,代码行数:9,代码来源:ragged_test_util.py


示例3: _unicode_decode

def _unicode_decode(input, input_encoding, errors, replacement_char,
                    replace_control_characters, with_offsets):
  """Decodes each string into a sequence of codepoints."""
  input = ragged_tensor.convert_to_tensor_or_ragged_tensor(input, name="input")
  input_ndims = input.shape.ndims
  if input_ndims is None:
    raise ValueError("Rank of `input` must be statically known.")

  if input_ndims > 1:
    # Convert to a ragged tensor with ragged_rank = input_ndims - 1.
    if not ragged_tensor.is_ragged(input):
      input = ragged_tensor.RaggedTensor.from_tensor(
          input, ragged_rank=input_ndims - 1)
    elif input.ragged_rank < input_ndims - 1:
      input = input.with_flat_values(
          ragged_tensor.RaggedTensor.from_tensor(
              input.flat_values,
              ragged_rank=input_ndims - input.ragged_rank + 1))

  # Reshape the input to a flat vector, and apply the gen_string_ops op.
  if ragged_tensor.is_ragged(input):
    flat_input = array_ops.reshape(input.flat_values, [-1])
  else:
    flat_input = array_ops.reshape(input, [-1])

  if with_offsets:
    decode_op = gen_string_ops.unicode_decode_with_offsets
  else:
    decode_op = gen_string_ops.unicode_decode
  flat_result = decode_op(
      input=flat_input,
      input_encoding=input_encoding,
      errors=errors,
      replacement_char=replacement_char,
      replace_control_characters=replace_control_characters)

  if input_ndims == 0:
    codepoints = flat_result.char_values
    if with_offsets:
      offsets = flat_result.char_to_byte_starts
  else:
    codepoints = ragged_tensor.RaggedTensor.from_row_splits(
        flat_result.char_values, flat_result.row_splits, validate=False)
    if input_ndims > 1:
      codepoints = input.with_flat_values(codepoints)
    if with_offsets:
      offsets = ragged_tensor.RaggedTensor.from_row_splits(
          flat_result.char_to_byte_starts, flat_result.row_splits,
          validate=False)
      if input_ndims > 1:
        offsets = input.with_flat_values(offsets)

  if with_offsets:
    return codepoints, offsets
  else:
    return codepoints
开发者ID:aritratony,项目名称:tensorflow,代码行数:56,代码来源:ragged_string_ops.py


示例4: assertRaggedEqual

  def assertRaggedEqual(self, a, b):
    """Asserts that two potentially ragged tensors are equal."""
    a_list = self._GetPyList(a)
    b_list = self._GetPyList(b)
    self.assertEqual(a_list, b_list)

    if not (isinstance(a, (list, tuple)) or isinstance(b, (list, tuple))):
      a_ragged_rank = a.ragged_rank if ragged_tensor.is_ragged(a) else 0
      b_ragged_rank = b.ragged_rank if ragged_tensor.is_ragged(b) else 0
      self.assertEqual(a_ragged_rank, b_ragged_rank)
开发者ID:aritratony,项目名称:tensorflow,代码行数:10,代码来源:ragged_test_util.py


示例5: handle

  def handle(self, args, kwargs):
    # Extract the binary args.
    if len(args) > 1:
      x = args[0]
      y = args[1]
      args = args[2:]
    elif args:
      kwargs = kwargs.copy()
      x = args[0]
      y = kwargs.pop(self._y, None)
      args = args[1:]
    else:
      kwargs = kwargs.copy()
      x = kwargs.pop(self._x, None)
      y = kwargs.pop(self._y, None)

    # Bail if we don't have at least one ragged argument.
    x_is_ragged = ragged_tensor.is_ragged(x)
    y_is_ragged = ragged_tensor.is_ragged(y)
    if not (x_is_ragged or y_is_ragged):
      return self.NOT_SUPPORTED

    # Convert args to tensors.  Bail if conversion fails.
    try:
      if not x_is_ragged:
        x = ops.convert_to_tensor(x, name=self._x, preferred_dtype=y.dtype)
      if not y_is_ragged:
        y = ops.convert_to_tensor(y, name=self._y, preferred_dtype=x.dtype)
    except (TypeError, ValueError):
      return self.NOT_SUPPORTED

    if x_is_ragged and y_is_ragged:
      x, y = ragged_tensor.match_row_splits_dtypes(x, y)

    if ((x_is_ragged and y_is_ragged) or
        (x_is_ragged and x.flat_values.shape.ndims <= y.shape.ndims) or
        (y_is_ragged and y.flat_values.shape.ndims <= x.shape.ndims)):
      bcast_shape = ragged_tensor_shape.broadcast_dynamic_shape(
          ragged_tensor_shape.RaggedTensorDynamicShape.from_tensor(x),
          ragged_tensor_shape.RaggedTensorDynamicShape.from_tensor(y))
      x = ragged_tensor_shape.broadcast_to(
          x, bcast_shape, broadcast_inner_dimensions=False)
      y = ragged_tensor_shape.broadcast_to(
          y, bcast_shape, broadcast_inner_dimensions=False)

    x_values = x.flat_values if ragged_tensor.is_ragged(x) else x
    y_values = y.flat_values if ragged_tensor.is_ragged(y) else y
    mapped_values = self._original_op(x_values, y_values, *args, **kwargs)
    if ragged_tensor.is_ragged(x):
      return x.with_flat_values(mapped_values)
    else:
      return y.with_flat_values(mapped_values)
开发者ID:aritratony,项目名称:tensorflow,代码行数:52,代码来源:ragged_dispatch.py


示例6: rank

def rank(input, name=None):  # pylint: disable=redefined-builtin
  """Returns the rank of a RaggedTensor.

  Returns a 0-D `int32` `Tensor` representing the rank of `input`.

  For example:

  ```python
  # shape of tensor 't' is [2, None, None]
  t = tf.ragged.constant([[[1], [2, 2]], [[3, 3, 3], [4, 4, 4, 4]]])
  tf.rank(t)  # 3
  ```

  Args:
    input: A `RaggedTensor`
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `int32`.
  """
  with ops.name_scope(name, 'RaggedRank', [input]) as name:
    if not ragged_tensor.is_ragged(input):
      return array_ops.rank(input, name)

    return input.ragged_rank + array_ops.rank(input.flat_values)
开发者ID:aritratony,项目名称:tensorflow,代码行数:25,代码来源:ragged_array_ops.py


示例7: normalize_tensors

def normalize_tensors(tensors):
  """Converts a nested structure of tensor-like objects to tensors.

  * `SparseTensor`-like inputs are converted to `SparseTensor`.
  * `TensorArray` inputs are passed through.
  * Everything else is converted to a dense `Tensor`.

  Args:
    tensors: A nested structure of tensor-like, list,
      `SparseTensor`, `SparseTensorValue`, or `TensorArray` objects.

  Returns:
    A nested structure of tensor, `SparseTensor`, or `TensorArray` objects.
  """
  flat_tensors = nest.flatten(tensors)
  prepared = []
  with ops.name_scope("normalize_tensors"):
    for i, t in enumerate(flat_tensors):
      if sparse_tensor_lib.is_sparse(t):
        prepared.append(sparse_tensor_lib.SparseTensor.from_value(t))
      elif ragged_tensor.is_ragged(t):
        prepared.append(
            ragged_tensor.convert_to_tensor_or_ragged_tensor(
                t, name="component_%d" % i))
      elif isinstance(t, tensor_array_ops.TensorArray):
        prepared.append(t)
      else:
        prepared.append(ops.convert_to_tensor(t, name="component_%d" % i))
  return nest.pack_sequence_as(tensors, prepared)
开发者ID:aritratony,项目名称:tensorflow,代码行数:29,代码来源:structure.py


示例8: _ragged_tile_axis

def _ragged_tile_axis(rt_input, axis, repeats, row_splits_dtype):
  """Tile a dimension of a RaggedTensor to match a ragged shape."""
  assert axis > 0  # Outermost dimension may not be ragged.

  if not ragged_tensor.is_ragged(rt_input):
    rt_input = ragged_tensor.RaggedTensor.from_tensor(
        rt_input, ragged_rank=1, row_splits_dtype=row_splits_dtype)

  if axis > 1:
    return rt_input.with_values(
        _ragged_tile_axis(rt_input.values, axis - 1, repeats,
                          row_splits_dtype))
  else:
    src_row_splits = rt_input.nested_row_splits
    src_row_lengths = rt_input.nested_row_lengths()
    splits = src_row_splits[0]

    dst_row_lengths = [repeats]
    for i in range(1, len(src_row_lengths)):
      dst_row_lengths.append(
          ragged_util.repeat_ranges(src_row_lengths[i], splits, repeats))
      splits = array_ops.gather(src_row_splits[i], splits)
    dst_values = ragged_util.repeat_ranges(rt_input.flat_values, splits,
                                           repeats)
    return ragged_tensor.RaggedTensor.from_nested_row_lengths(
        dst_values, dst_row_lengths, validate=False)
开发者ID:aritratony,项目名称:tensorflow,代码行数:26,代码来源:ragged_tensor_shape.py


示例9: _eval_tensor

 def _eval_tensor(self, tensor):
   if ragged_tensor.is_ragged(tensor):
     return ragged_tensor_value.RaggedTensorValue(
         self._eval_tensor(tensor.values),
         self._eval_tensor(tensor.row_splits))
   else:
     return test_util.TensorFlowTestCase._eval_tensor(self, tensor)
开发者ID:aritratony,项目名称:tensorflow,代码行数:7,代码来源:ragged_test_util.py


示例10: _replace_ragged_with_flat_values

def _replace_ragged_with_flat_values(value, nested_splits_lists):
  """Replace RaggedTensors with their flat_values, and record their splits.

  Returns a copy of `value`, with any nested `RaggedTensor`s replaced by their
  `flat_values` tensor.  Looks inside lists, tuples, and dicts.

  Appends each `RaggedTensor`'s `nested_splits` to `nested_splits_lists`.

  Args:
    value: The value that should be transformed by replacing `RaggedTensors`.
    nested_splits_lists: An output parameter used to record the `nested_splits`
      for any `RaggedTensors` that were replaced.

  Returns:
    A copy of `value` with nested `RaggedTensors` replaced by their `values`.
  """
  # Base case
  if ragged_tensor.is_ragged(value):
    value = ragged_tensor.convert_to_tensor_or_ragged_tensor(value)
    nested_splits_lists.append(value.nested_row_splits)
    return value.flat_values

  # Recursion cases
  def recurse(v):
    return _replace_ragged_with_flat_values(v, nested_splits_lists)

  if isinstance(value, list):
    return [recurse(v) for v in value]
  elif isinstance(value, tuple):
    return tuple(recurse(v) for v in value)
  elif isinstance(value, dict):
    return dict((k, recurse(v)) for (k, v) in value.items())
  else:
    return value
开发者ID:aritratony,项目名称:tensorflow,代码行数:34,代码来源:ragged_functional_ops.py


示例11: ragged_op

  def ragged_op(*args, **kwargs):
    """Ragged version of `op`."""
    args = list(args)

    # Collect all of the elementwise arguments, and put them in a single
    # dict whose values are the (potentially ragged) tensors that need to
    # be broadcast to a common shape.  The keys of this dict are tuples
    # (argkey, index), where argkey is an int for poitional args or a string
    # for keyword args; and index is None for non-list args and the index of the
    # tensor for list args.
    elementwise_args = {}
    for (name, position, is_list) in elementwise_arg_infos.values():
      if position < len(args):
        if is_list:
          args[position] = list(args[position])
          for (index, arg) in enumerate(args[position]):
            elementwise_args[position, index] = arg
        else:
          elementwise_args[position, None] = args[position]
      elif name in kwargs:
        if is_list:
          kwargs[name] = list(kwargs[name])
          for (i, arg) in enumerate(kwargs[name]):
            elementwise_args[name, i] = arg
        else:
          elementwise_args[name, None] = kwargs[name]

    with ops.name_scope(None, op.__name__, elementwise_args.values()):
      # Convert all inputs to tensors or ragged tensors.
      for ((key, index), tensor) in elementwise_args.items():
        argname = elementwise_arg_infos[key].name
        converted = ragged_factory_ops.convert_to_tensor_or_ragged_tensor(
            tensor, name=argname)
        elementwise_args[key, index] = converted

      # Broadcast tensors to have compatible shapes.
      broadcast_args, result_splits, broadcast_check_ops = \
          _broadcast_elementwise_args(elementwise_args)

      # Replace tensor arguments with their dense values.
      for ((key, index), tensor) in broadcast_args.items():
        if ragged_tensor.is_ragged(tensor):
          if isinstance(key, int) and index is None:
            args[key] = tensor.inner_values
          elif isinstance(key, int) and index is not None:
            args[key][index] = tensor.inner_values
          elif isinstance(key, str) and index is None:
            kwargs[key] = tensor.inner_values
          else:
            assert isinstance(key, str) and index is not None
            kwargs[key][index] = tensor.inner_values

      # Call the elementwise op on the broadcasted dense values.
      with ops.control_dependencies(broadcast_check_ops):
        result_values = op(*args, **kwargs)

      # Restore any ragged dimensions that we stripped off, and return the
      # result.
      return ragged_factory_ops.from_nested_row_splits(result_values,
                                                       result_splits)
开发者ID:aeverall,项目名称:tensorflow,代码行数:60,代码来源:ragged_elementwise_ops.py


示例12: assertDatasetsEqual

  def assertDatasetsEqual(self, dataset1, dataset2):
    """Checks that datasets are equal. Supports both graph and eager mode."""
    self.assertTrue(dataset_ops.get_structure(dataset1).is_compatible_with(
        dataset_ops.get_structure(dataset2)))
    self.assertTrue(dataset_ops.get_structure(dataset2).is_compatible_with(
        dataset_ops.get_structure(dataset1)))
    flattened_types = nest.flatten(
        dataset_ops.get_legacy_output_types(dataset1))

    next1 = self.getNext(dataset1)
    next2 = self.getNext(dataset2)

    while True:
      try:
        op1 = self.evaluate(next1())
      except errors.OutOfRangeError:
        with self.assertRaises(errors.OutOfRangeError):
          self.evaluate(next2())
        break
      op2 = self.evaluate(next2())

      op1 = nest.flatten(op1)
      op2 = nest.flatten(op2)
      assert len(op1) == len(op2)
      for i in range(len(op1)):
        if sparse_tensor.is_sparse(op1[i]):
          self.assertSparseValuesEqual(op1[i], op2[i])
        elif ragged_tensor.is_ragged(op1[i]):
          self.assertRaggedEqual(op1[i], op2[i])
        elif flattened_types[i] == dtypes.string:
          self.assertAllEqual(op1[i], op2[i])
        else:
          self.assertAllClose(op1[i], op2[i])
开发者ID:aritratony,项目名称:tensorflow,代码行数:33,代码来源:test_base.py


示例13: reduce_mean

def reduce_mean(input_tensor, axis=None, keepdims=None, name=None):
  """For docs, see: _RAGGED_REDUCE_DOCSTRING."""
  with ops.name_scope(name, 'RaggedReduceMean', [input_tensor, axis]):
    total = reduce_sum(input_tensor, axis, keepdims)
    if ragged_tensor.is_ragged(input_tensor):
      ones = ragged_tensor.RaggedTensor.from_nested_row_splits(
          array_ops.ones_like(input_tensor.flat_values),
          input_tensor.nested_row_splits)
    else:
      ones = array_ops.ones_like(input_tensor)
    count = reduce_sum(ones, axis, keepdims)
    if ragged_tensor.is_ragged(total):
      return ragged_tensor.RaggedTensor.from_nested_row_splits(
          total.flat_values / count.flat_values, total.nested_row_splits)
    else:
      return total / count
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:16,代码来源:ragged_math_ops.py


示例14: reduce_mean

def reduce_mean(rt_input, axis=None, name=None):
  """For docs, see: _RAGGED_REDUCE_DOCSTRING."""
  with ops.name_scope(name, 'RaggedReduceMean', [rt_input, axis]):
    total = reduce_sum(rt_input, axis)
    if ragged_tensor.is_ragged(rt_input):
      ones = ragged_factory_ops.from_nested_row_splits(
          array_ops.ones_like(rt_input.inner_values),
          rt_input.nested_row_splits)
    else:
      ones = array_ops.ones_like(rt_input)
    count = reduce_sum(ones, axis)
    if ragged_tensor.is_ragged(total):
      return ragged_factory_ops.from_nested_row_splits(
          total.inner_values / count.inner_values, total.nested_row_splits)
    else:
      return total / count
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:16,代码来源:ragged_math_ops.py


示例15: testToBatchedTensorList

  def testToBatchedTensorList(self, value_fn, element_0_fn):
    batched_value = value_fn()
    s = structure.Structure.from_value(batched_value)
    batched_tensor_list = s._to_batched_tensor_list(batched_value)

    # The batch dimension is 2 for all of the test cases.
    # NOTE(mrry): `tf.shape()` does not currently work for the DT_VARIANT
    # tensors in which we store sparse tensors.
    for t in batched_tensor_list:
      if t.dtype != dtypes.variant:
        self.assertEqual(2, self.evaluate(array_ops.shape(t)[0]))

    # Test that the 0th element from the unbatched tensor is equal to the
    # expected value.
    expected_element_0 = self.evaluate(element_0_fn())
    unbatched_s = s._unbatch()
    actual_element_0 = unbatched_s._from_tensor_list(
        [t[0] for t in batched_tensor_list])

    for expected, actual in zip(
        nest.flatten(expected_element_0), nest.flatten(actual_element_0)):
      if sparse_tensor.is_sparse(expected):
        self.assertSparseValuesEqual(expected, actual)
      elif ragged_tensor.is_ragged(expected):
        self.assertRaggedEqual(expected, actual)
      else:
        self.assertAllEqual(expected, actual)
开发者ID:aritratony,项目名称:tensorflow,代码行数:27,代码来源:structure_test.py


示例16: to_sparse

def to_sparse(rt_input, name=None):
  """Converts a `RaggedTensor` into a sparse tensor.

  Example:

  ```python
  >>> rt = ragged.constant([[1, 2, 3], [4], [], [5, 6]])
  >>> ragged.to_sparse(rt).eval()
  SparseTensorValue(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [3, 1]],
                    values=[1, 2, 3, 4, 5, 6],
                    dense_shape=[4, 3])
  ```

  Args:
    rt_input: The input `RaggedTensor`.
    name: A name prefix for the returned tensors (optional).

  Returns:
    A SparseTensor with the same values as `rt_input`.
  """
  if not ragged_tensor.is_ragged(rt_input):
    raise TypeError('Expected RaggedTensor, got %s' % type(rt_input).__name__)
  with ops.name_scope(name, 'RaggedToSparse', [rt_input]):
    rt_input = ragged_factory_ops.convert_to_tensor_or_ragged_tensor(
        rt_input, name='rt_input')
    result = gen_ragged_conversion_ops.ragged_tensor_to_sparse(
        rt_input.nested_row_splits, rt_input.inner_values, name=name)
    return sparse_tensor.SparseTensor(
        result.sparse_indices, result.sparse_values, result.sparse_dense_shape)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:29,代码来源:ragged_conversion_ops.py


示例17: eval_to_list

 def eval_to_list(self, tensor):
   value = self.evaluate(tensor)
   if ragged_tensor.is_ragged(value):
     return value.to_list()
   elif isinstance(value, np.ndarray):
     return value.tolist()
   else:
     return value
开发者ID:aritratony,项目名称:tensorflow,代码行数:8,代码来源:ragged_test_util.py


示例18: testFromTensorSlicesMixedRagged

  def testFromTensorSlicesMixedRagged(self):
    components = (np.tile(np.array([[1], [2], [3]]),
                          20), np.tile(np.array([[12], [13], [14]]),
                                       22), np.array([37.0, 38.0, 39.0]),
                  sparse_tensor.SparseTensorValue(
                      indices=np.array([[0, 0], [1, 0], [2, 0]]),
                      values=np.array([0, 0, 0]),
                      dense_shape=np.array([3, 1])),
                  sparse_tensor.SparseTensorValue(
                      indices=np.array([[0, 0], [1, 1], [2, 2]]),
                      values=np.array([1, 2, 3]),
                      dense_shape=np.array([3, 3])),
                  ragged_factory_ops.constant_value([[[0]], [[1]], [[2]]]))

    dataset = dataset_ops.Dataset.from_tensor_slices(components)
    get_next = self.getNext(dataset)

    expected = [
        (sparse_tensor.SparseTensorValue(
            indices=np.array([[0]]),
            values=np.array([0]),
            dense_shape=np.array([1])),
         sparse_tensor.SparseTensorValue(
             indices=np.array([[0]]),
             values=np.array([1]),
             dense_shape=np.array([3])), ragged_factory_ops.constant_value([[0]
                                                                           ])),
        (sparse_tensor.SparseTensorValue(
            indices=np.array([[0]]),
            values=np.array([0]),
            dense_shape=np.array([1])),
         sparse_tensor.SparseTensorValue(
             indices=np.array([[1]]),
             values=np.array([2]),
             dense_shape=np.array([3])), ragged_factory_ops.constant_value([[1]
                                                                           ])),
        (sparse_tensor.SparseTensorValue(
            indices=np.array([[0]]),
            values=np.array([0]),
            dense_shape=np.array([1])),
         sparse_tensor.SparseTensorValue(
             indices=np.array([[2]]),
             values=np.array([3]),
             dense_shape=np.array([3])), ragged_factory_ops.constant_value([[2]
                                                                           ])),
    ]
    for i in range(3):
      results = self.evaluate(get_next())
      for component, result_component in zip(
          (list(zip(*components[:3]))[i] + expected[i]), results):
        if sparse_tensor.is_sparse(component):
          self.assertSparseValuesEqual(component, result_component)
        elif ragged_tensor.is_ragged(component):
          self.assertRaggedEqual(component, result_component)
        else:
          self.assertAllEqual(component, result_component)
    with self.assertRaises(errors.OutOfRangeError):
      self.evaluate(get_next())
开发者ID:aritratony,项目名称:tensorflow,代码行数:58,代码来源:from_tensor_slices_test.py


示例19: _increase_ragged_rank_to

def _increase_ragged_rank_to(rt_input, ragged_rank):
  """Adds ragged dimensions to `rt_input` so it has the desired ragged rank."""
  if ragged_rank > 0:
    if not ragged_tensor.is_ragged(rt_input):
      rt_input = ragged_conversion_ops.from_tensor(rt_input)
    if rt_input.ragged_rank < ragged_rank:
      rt_input = rt_input.with_values(
          _increase_ragged_rank_to(rt_input.values, ragged_rank - 1))
  return rt_input
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:9,代码来源:ragged_concat_ops.py


示例20: _increase_ragged_rank_to

def _increase_ragged_rank_to(rt_input, ragged_rank, row_splits_dtype):
  """Adds ragged dimensions to `rt_input` so it has the desired ragged rank."""
  if ragged_rank > 0:
    if not ragged_tensor.is_ragged(rt_input):
      rt_input = ragged_tensor.RaggedTensor.from_tensor(
          rt_input, row_splits_dtype=row_splits_dtype)
    if rt_input.ragged_rank < ragged_rank:
      rt_input = rt_input.with_values(
          _increase_ragged_rank_to(rt_input.values, ragged_rank - 1,
                                   row_splits_dtype))
  return rt_input
开发者ID:aritratony,项目名称:tensorflow,代码行数:11,代码来源:ragged_concat_ops.py



注:本文中的tensorflow.python.ops.ragged.ragged_tensor.is_ragged函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap