本文整理汇总了Python中tensorflow.python.ops.nn_ops.relu函数的典型用法代码示例。如果您正苦于以下问题:Python relu函数的具体用法?Python relu怎么用?Python relu使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了relu函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testGradientFloat16
def testGradientFloat16(self):
with self.test_session(use_gpu=True) as sess:
# Randomly construct a 1D shape from [1, 40)
shape = random_ops.random_uniform(
[1], minval=1, maxval=40, dtype=dtypes.int32)
# Construct the fp32 graph and its gradient.
x = random_ops.random_uniform(shape, minval=-1, maxval=1, name="x")
y1 = nn_ops.relu(x, name="relu_fp32")
l1 = nn_ops.l2_loss(y1)
dx_f32 = gradients_impl.gradients(l1, x)
# Construct the fp16 graph and its gradient.
# It starts with the same x, in fp32. But before it reaches Relu, it is
# cast into fp16. So during backprop, the gradient computation is in fp16.
x2 = math_ops.cast(x, dtype=dtypes.float16, name="cast")
y2 = nn_ops.relu(x2, name="relu_fp16")
l2 = nn_ops.l2_loss(y2)
dx_f16 = gradients_impl.gradients(l2, x)
# Repeat the experiment for 100 times. All tensor shapes and its tensor
# values are randomly generated for each run.
for _ in xrange(100):
dx_f32_v, dx_f16_v = sess.run([dx_f32, dx_f16])
self.assertAllClose(dx_f32_v, dx_f16_v, atol=3e-4)
开发者ID:HughKu,项目名称:tensorflow,代码行数:25,代码来源:relu_op_test.py
示例2: doTestExportNestedNames
def doTestExportNestedNames(self, use_resource=False):
graph1 = ops.Graph()
with graph1.as_default():
with ops.name_scope("hidden1/hidden2/hidden3"):
images = constant_op.constant(
1.0, dtypes.float32, shape=[3, 2], name="images")
if use_resource:
weights1 = variables.Variable(
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], name="weights")
biases1 = resource_variable_ops.ResourceVariable(
[0.1] * 3, name="biases")
else:
biases1 = variables.Variable([0.1] * 3, name="biases")
weights1 = variables.Variable(
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], name="weights")
nn_ops.relu(math_ops.matmul(images, weights1) + biases1, name="relu")
orig_meta_graph, var_list = meta_graph.export_scoped_meta_graph(
export_scope="hidden1/hidden2", graph=graph1)
var_names = [v.name for _, v in var_list.items()]
self.assertEqual(["hidden3/biases:0", "hidden3/weights:0"],
sorted(var_list.keys()))
self.assertEqual([
"hidden1/hidden2/hidden3/biases:0", "hidden1/hidden2/hidden3/weights:0"
], sorted(var_names))
for node in orig_meta_graph.graph_def.node:
self.assertTrue(node.name.startswith("hidden3"))
graph2 = ops.Graph()
new_var_list = meta_graph.import_scoped_meta_graph(
orig_meta_graph, import_scope="new_hidden1/new_hidden2", graph=graph2)
self.assertEqual(["hidden3/biases:0", "hidden3/weights:0"],
sorted(new_var_list.keys()))
new_var_names = [v.name for _, v in new_var_list.items()]
self.assertEqual([
"new_hidden1/new_hidden2/hidden3/biases:0",
"new_hidden1/new_hidden2/hidden3/weights:0"
], sorted(new_var_names))
nodes = [
"new_hidden1/new_hidden2/hidden3/biases/Assign",
"new_hidden1/new_hidden2/hidden3/weights/Assign"
]
expected = [
b"loc:@new_hidden1/new_hidden2/hidden3/biases",
b"loc:@new_hidden1/new_hidden2/hidden3/weights"
]
for n, e in zip(nodes, expected):
self.assertEqual([e], graph2.get_operation_by_name(n).get_attr("_class"))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:49,代码来源:meta_graph_test.py
示例3: testSmallNetwork
def testSmallNetwork(self):
image = array_ops.placeholder(dtypes.float32, shape=[1, 28, 28, 1])
label = array_ops.placeholder(dtypes.float32, shape=[1, 10])
w = variables.Variable(
random_ops.truncated_normal([5, 5, 1, 32], stddev=0.1))
b = variables.Variable(random_ops.truncated_normal([32], stddev=0.1))
conv = nn_ops.conv2d(image, w, strides=[1, 1, 1, 1], padding="SAME")
h_conv = nn_ops.relu(conv + b)
h_conv_flat = array_ops.reshape(h_conv, [1, -1])
w_fc = variables.Variable(
random_ops.truncated_normal([25088, 10], stddev=0.1))
b_fc = variables.Variable(random_ops.truncated_normal([10], stddev=0.1))
y_conv = nn_ops.softmax(math_ops.matmul(h_conv_flat, w_fc) + b_fc)
cross_entropy = math_ops.reduce_mean(-math_ops.reduce_sum(
label * math_ops.log(y_conv), reduction_indices=[1]))
_ = adam.AdamOptimizer(1e-4).minimize(cross_entropy)
mg = meta_graph.create_meta_graph_def(graph=ops.get_default_graph())
report = cost_analyzer.GenerateCostReport(mg)
self.assertTrue(b"MatMul" in report)
self.assertTrue(b"ApplyAdam" in report)
self.assertTrue(b"Conv2D" in report)
self.assertTrue(b"Conv2DBackpropInput" in report)
self.assertTrue(b"Conv2DBackpropFilter" in report)
self.assertTrue(b"Softmax" in report)
# Also print the report to make it easier to debug
print("{}".format(report))
开发者ID:ajaybhat,项目名称:tensorflow,代码行数:31,代码来源:cost_analyzer_test.py
示例4: testBatchNormScope
def testBatchNormScope(self):
batch_size, height, width, depth = 5, 128, 128, 3
g = ops.Graph()
with g.as_default():
inputs = array_ops.zeros((batch_size, height, width, depth))
stride = 1
out_depth = 32
scope = ''
node = conv2d(
inputs,
out_depth, [2, 2],
stride=stride,
padding='SAME',
weights_initializer=self._WeightInit(0.09),
activation_fn=None,
normalizer_fn=batch_norm,
normalizer_params=self._BatchNormParams(False),
scope=scope)
node = nn_ops.relu(node, name='Relu6')
bn_list = common.BatchNormGroups(g)
with open('/tmp/common_test.pbtxt', 'w') as f:
f.write(str(g.as_graph_def()))
# Exactly one batch norm layer with empty scope should be found
self.assertEqual(len(bn_list), 1)
self.assertEqual(bn_list[0], '')
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:27,代码来源:common_test.py
示例5: test
def test(self):
np.random.seed(1) # Make it reproducible.
x = np.random.randn(3, 4).astype(np.float32)
y = np.maximum(x, 0.0)
z = self.evaluate(nn_ops.relu(constant_op.constant(x)))
self.assertAllEqual(y, z)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:7,代码来源:nn_test.py
示例6: hinge_loss
def hinge_loss(logits, labels=None, scope=None, target=None):
"""Method that returns the loss tensor for hinge loss.
Args:
logits: The logits, a float tensor.
labels: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.
scope: The scope for the operations performed in computing the loss.
target: Deprecated alias for `labels`.
Returns:
A `Tensor` of same shape as logits and target representing the loss values
across the batch.
Raises:
ValueError: If the shapes of `logits` and `labels` don't match.
"""
labels = _labels(labels, target)
with ops.name_scope(scope, "hinge_loss", [logits, labels]) as scope:
logits.get_shape().assert_is_compatible_with(labels.get_shape())
# We first need to convert binary labels to -1/1 labels (as floats).
labels = math_ops.to_float(labels)
all_ones = array_ops.ones_like(labels)
labels = math_ops.sub(2 * labels, all_ones)
return nn_ops.relu(math_ops.sub(all_ones, math_ops.mul(labels, logits)))
开发者ID:RapidApplicationDevelopment,项目名称:tensorflow,代码行数:25,代码来源:loss_ops.py
示例7: hinge_loss
def hinge_loss(labels, logits, weights=1.0, scope=None,
loss_collection=ops.GraphKeys.LOSSES):
"""Adds a hinge loss to the training procedure.
Args:
labels: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.
logits: The logits, a float tensor.
weights: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches `predictions`.
scope: The scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
Returns:
A scalar `Tensor` of the loss value.
Raises:
ValueError: If the shapes of `logits` and `labels` don't match.
"""
with ops.name_scope(scope, "hinge_loss", [logits, labels]) as scope:
logits.get_shape().assert_is_compatible_with(labels.get_shape())
# We first need to convert binary labels to -1/1 labels (as floats).
labels = math_ops.to_float(labels)
all_ones = array_ops.ones_like(labels)
labels = math_ops.sub(2 * labels, all_ones)
losses = nn_ops.relu(math_ops.sub(all_ones, math_ops.mul(labels, logits)))
return compute_weighted_loss(losses, weights, scope, loss_collection)
开发者ID:BloodD,项目名称:tensorflow,代码行数:27,代码来源:losses.py
示例8: testNaNs
def testNaNs(self):
# Test that relu(nan) = nan for various sizes.
for i in range(18):
x = np.zeros(i) + np.nan
with self.test_session():
z = nn_ops.relu(constant_op.constant(x)).eval()
self.assertTrue(np.isnan(z).all())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:nn_test.py
示例9: _testRelu
def _testRelu(self, np_features, use_gpu=False):
np_relu = self._npRelu(np_features)
with self.test_session(use_gpu=use_gpu):
relu = nn_ops.relu(np_features)
tf_relu = relu.eval()
self.assertAllClose(np_relu, tf_relu)
self.assertShapeEqual(np_relu, relu)
开发者ID:awisbith,项目名称:tensorflow,代码行数:7,代码来源:relu_op_test.py
示例10: SimulateFusedConv2dBiasActivationInt8
def SimulateFusedConv2dBiasActivationInt8(conv_input_scale, conv_input, kernel,
padding, strides, side_input_scale,
side_input, biases):
"""Simulates the int8 fused 2-D convolution op using separate float ops.
The arguments and return values have the same format, meanings and
restrictions as the actual op.
Args:
conv_input_scale: A scalar 'float'.
conv_input: A `Tensor` of type `qint8` in NCHW_VECT_C layout.
kernel: A `Tensor` of type `qint8` in OIHW_VECT_I layout.
padding: A `string` from: `"SAME", "VALID"`.
strides: A list of `ints`.
side_input_scale: A scalar 'float'.
side_input: A `Tensor` of type `qint8` in NCHW_VECT_C layout.
biases: A `Tensor` of type `float32` in NCHW layout.
Returns:
A `Tensor` of type `qint8` in NCHW_VECT_C layout.
"""
conv_result = nn_ops.conv2d(
NchwVectCToNchw(gen_array_ops.dequantize(conv_input, -128, 127)),
OihwVectIToHwio(gen_array_ops.dequantize(kernel, -128, 127)),
strides=strides,
padding=padding,
data_format="NCHW") * conv_input_scale
conv_and_side_inputs = conv_result + side_input_scale * NchwVectCToNchw(
gen_array_ops.dequantize(side_input, -128, 127))
logit = nn_ops.bias_add(conv_and_side_inputs, biases, data_format="NCHW")
result, _, _ = gen_array_ops.quantize_v2(
NchwToNchwVectC(nn_ops.relu(logit)), -128, 127, dtypes.qint8)
return result
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:34,代码来源:fused_conv2d_bias_activation_op_test.py
示例11: hinge_loss
def hinge_loss(labels, logits, weights=1.0, scope=None,
loss_collection=ops.GraphKeys.LOSSES):
"""Adds a hinge loss to the training procedure.
WARNING: `weights` also supports dimensions of 1, but the broadcasting does
not work as advertised, you'll wind up with weighted sum instead of weighted
mean for any but the last dimension. This will be cleaned up soon, so please
do not rely on the current behavior for anything but the shapes documented for
`weights` below.
Args:
labels: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.
logits: The logits, a float tensor.
weights: Coefficients for the loss a scalar, a tensor of shape
`[batch_size]` or a tensor whose shape matches `predictions`.
scope: The scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
Returns:
A scalar `Tensor` of the loss value.
Raises:
ValueError: If the shapes of `logits` and `labels` don't match.
"""
with ops.name_scope(scope, "hinge_loss", (logits, labels)) as scope:
logits = math_ops.to_float(logits)
labels = math_ops.to_float(labels)
logits.get_shape().assert_is_compatible_with(labels.get_shape())
# We first need to convert binary labels to -1/1 labels (as floats).
all_ones = array_ops.ones_like(labels)
labels = math_ops.subtract(2 * labels, all_ones)
losses = nn_ops.relu(
math_ops.subtract(all_ones, math_ops.multiply(labels, logits)))
return compute_weighted_loss(losses, weights, scope, loss_collection)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:35,代码来源:losses_impl.py
示例12: hinge_loss
def hinge_loss(labels, logits, weights=1.0, scope=None,
loss_collection=ops.GraphKeys.LOSSES,
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
"""Adds a hinge loss to the training procedure.
Args:
labels: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.
logits: The logits, a float tensor.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `losses` dimension).
scope: The scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
reduction: Type of reduction to apply to loss.
Returns:
Weighted loss float `Tensor`. If `reduction` is `NONE`, this has the same
shape as `labels`; otherwise, it is scalar.
Raises:
ValueError: If the shapes of `logits` and `labels` don't match.
"""
with ops.name_scope(scope, "hinge_loss", (logits, labels, weights)) as scope:
logits = math_ops.to_float(logits)
labels = math_ops.to_float(labels)
logits.get_shape().assert_is_compatible_with(labels.get_shape())
# We first need to convert binary labels to -1/1 labels (as floats).
all_ones = array_ops.ones_like(labels)
labels = math_ops.subtract(2 * labels, all_ones)
losses = nn_ops.relu(
math_ops.subtract(all_ones, math_ops.multiply(labels, logits)))
return compute_weighted_loss(
losses, weights, scope, loss_collection, reduction=reduction)
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:34,代码来源:losses_impl.py
示例13: testGradient
def testGradient(self):
with ops.Graph().as_default() as g:
inputs = array_ops.placeholder(
dtypes.float32, shape=[None, 100], name="input")
weights = array_ops.placeholder(
dtypes.float32, shape=[100, 10], name="weights")
biases = array_ops.placeholder(dtypes.float32, shape=[10], name="biases")
activations = nn_ops.relu(
math_ops.matmul(inputs, weights) + biases, name="activations")
loss = math_ops.reduce_mean(activations, name="loss")
gdef = g.as_graph_def()
with ops.Graph().as_default() as g:
input_placeholder = array_ops.placeholder(dtypes.float32, shape=[32, 100])
weights_var = variables.Variable(
random_ops.truncated_normal([100, 10]), name="weights")
biases_var = variables.Variable(array_ops.zeros([10]), name="biases")
activations, loss = importer.import_graph_def(
gdef,
input_map={
"input:0": input_placeholder,
"weights:0": weights_var,
"biases:0": biases_var
},
return_elements=["activations:0", "loss:0"])
self.assertEqual([32, 10], activations.get_shape())
self.assertEqual([], loss.get_shape())
weights_grad, biases_grad = gradients_impl.gradients(
loss, [weights_var, biases_var])
self.assertEqual([100, 10], weights_grad.get_shape())
self.assertEqual([10], biases_grad.get_shape())
开发者ID:pcm17,项目名称:tensorflow,代码行数:31,代码来源:importer_test.py
示例14: bottleneck_hole
def bottleneck_hole(inputs,
depth,
depth_bottleneck,
stride,
rate=2,
outputs_collections=None,
scope=None):
with variable_scope.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = layers.conv2d(
inputs,
depth, [1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = layers.conv2d(
inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = layers_lib.conv2d(residual, depth_bottleneck, [3, 3], stride=1, rate=rate, padding='SAME', scope='conv2')
residual = layers.conv2d(
residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3')
output = nn_ops.relu(shortcut + residual)
return utils.collect_named_outputs(outputs_collections, sc.name, output)
开发者ID:jacke121,项目名称:tf_rfcn,代码行数:28,代码来源:resnet_v1_rfcn_hole_iter4_test.py
示例15: testPotentialCycle
def testPotentialCycle(self):
graph1 = ops.Graph()
with graph1.as_default():
a = constant_op.constant(1.0, shape=[2, 2])
b = constant_op.constant(2.0, shape=[2, 2])
matmul = math_ops.matmul(a, b)
with ops.name_scope("hidden1"):
c = nn_ops.relu(matmul)
d = constant_op.constant(3.0, shape=[2, 2])
matmul = math_ops.matmul(c, d)
orig_meta_graph, _ = meta_graph.export_scoped_meta_graph(
export_scope="hidden1", graph=graph1)
graph2 = ops.Graph()
with graph2.as_default():
with self.assertRaisesRegexp(ValueError, "Graph contains unbound inputs"):
meta_graph.import_scoped_meta_graph(
orig_meta_graph, import_scope="new_hidden1")
meta_graph.import_scoped_meta_graph(
orig_meta_graph,
import_scope="new_hidden1",
input_map={
"$unbound_inputs_MatMul": constant_op.constant(
4.0, shape=[2, 2])
})
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:27,代码来源:meta_graph_test.py
示例16: test
def test(self):
np.random.seed(1) # Make it reproducible.
x = np.random.randn(3, 4).astype(np.float32)
y = np.maximum(x, 0.0)
with self.test_session():
z = nn_ops.relu(constant_op.constant(x)).eval()
self.assertAllEqual(y, z)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:nn_test.py
示例17: hinge_loss
def hinge_loss(logits, labels=None, scope=None):
"""Method that returns the loss tensor for hinge loss.
Args:
logits: The logits, a float tensor. Note that logits are assumed to be
unbounded and 0-centered. A value > 0 (resp. < 0) is considered a positive
(resp. negative) binary prediction.
labels: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0. Internally
the {0,1} labels are converted to {-1,1} when calculating the hinge loss.
scope: The scope for the operations performed in computing the loss.
Returns:
An unweighted `Tensor` of same shape as `logits` and `labels` representing
the
loss values across the batch.
Raises:
ValueError: If the shapes of `logits` and `labels` don't match.
"""
with ops.name_scope(scope, "hinge_loss", [logits, labels]) as scope:
logits.get_shape().assert_is_compatible_with(labels.get_shape())
# We first need to convert binary labels to -1/1 labels (as floats).
labels = math_ops.to_float(labels)
all_ones = array_ops.ones_like(labels)
labels = math_ops.subtract(2 * labels, all_ones)
return nn_ops.relu(
math_ops.subtract(all_ones, math_ops.multiply(labels, logits)))
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:28,代码来源:loss_ops.py
示例18: unregularized_loss
def unregularized_loss(self, examples):
"""Add operations to compute the loss (without the regularization loss).
Args:
examples: Examples to compute unregularized loss on.
Returns:
An Operation that computes mean (unregularized) loss for given set of
examples.
Raises:
ValueError: if examples are not well defined.
"""
self._assertSpecified([
'example_labels', 'example_weights', 'sparse_features', 'dense_features'
], examples)
self._assertList(['sparse_features', 'dense_features'], examples)
with name_scope('sdca/unregularized_loss'):
predictions = math_ops.cast(
self._linear_predictions(examples), dtypes.float64)
labels = math_ops.cast(
internal_convert_to_tensor(examples['example_labels']),
dtypes.float64)
weights = math_ops.cast(
internal_convert_to_tensor(examples['example_weights']),
dtypes.float64)
if self._options['loss_type'] == 'logistic_loss':
return math_ops.reduce_sum(math_ops.multiply(
sigmoid_cross_entropy_with_logits(labels=labels,
logits=predictions),
weights)) / math_ops.reduce_sum(weights)
if self._options['loss_type'] == 'poisson_loss':
return math_ops.reduce_sum(math_ops.multiply(
log_poisson_loss(targets=labels, log_input=predictions),
weights)) / math_ops.reduce_sum(weights)
if self._options['loss_type'] in ['hinge_loss', 'smooth_hinge_loss']:
# hinge_loss = max{0, 1 - y_i w*x} where y_i \in {-1, 1}. So, we need to
# first convert 0/1 labels into -1/1 labels.
all_ones = array_ops.ones_like(predictions)
adjusted_labels = math_ops.subtract(2 * labels, all_ones)
# Tensor that contains (unweighted) error (hinge loss) per
# example.
error = nn_ops.relu(
math_ops.subtract(all_ones,
math_ops.multiply(adjusted_labels, predictions)))
weighted_error = math_ops.multiply(error, weights)
return math_ops.reduce_sum(weighted_error) / math_ops.reduce_sum(
weights)
# squared loss
err = math_ops.subtract(labels, predictions)
weighted_squared_err = math_ops.multiply(math_ops.square(err), weights)
# SDCA squared loss function is sum(err^2) / (2*sum(weights))
return (math_ops.reduce_sum(weighted_squared_err) /
(2.0 * math_ops.reduce_sum(weights)))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:59,代码来源:sdca_ops.py
示例19: testReluInt8x4BadShape
def testReluInt8x4BadShape(self):
if not test.is_gpu_available(cuda_only=True):
self.skipTest("No GPU available")
inputs = constant_op.constant(
np.array([[-50, 7, 23], [0, 1, -5], [6, -2, 11]]), dtypes.qint8)
with self.assertRaisesRegexp(
errors.InvalidArgumentError,
"Tensor size must be a multiple of 4 for Relu<qint8>. Got 9"):
self.evaluate(nn_ops.relu(inputs))
inputs = constant_op.constant(
np.array([1, -2, 3, -4, 5, -6, 7, -8, 9, -8, 7, -6, 5, -4, 3, -2, 1]),
dtypes.qint8)
with self.assertRaisesRegexp(
errors.InvalidArgumentError,
"Tensor size must be a multiple of 4 for Relu<qint8>. Got 17"):
self.evaluate(nn_ops.relu(inputs))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:17,代码来源:relu_op_test.py
示例20: func
def func(inp):
conv = nn_ops.conv2d(
inp,
filter=array_ops.ones([3, 3, 3, 16]),
strides=[1, 1, 1, 1],
padding='SAME')
output = nn_ops.relu(conv, name='output')
return output
开发者ID:aritratony,项目名称:tensorflow,代码行数:8,代码来源:lite_v2_test.py
注:本文中的tensorflow.python.ops.nn_ops.relu函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论