• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python nn.sigmoid_cross_entropy_with_logits函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.nn.sigmoid_cross_entropy_with_logits函数的典型用法代码示例。如果您正苦于以下问题:Python sigmoid_cross_entropy_with_logits函数的具体用法?Python sigmoid_cross_entropy_with_logits怎么用?Python sigmoid_cross_entropy_with_logits使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了sigmoid_cross_entropy_with_logits函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _log_loss_with_two_classes

def _log_loss_with_two_classes(logits, target):
  # sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
  if len(target.get_shape()) == 1:
    target = array_ops.expand_dims(target, axis=1)
  loss_vec = nn.sigmoid_cross_entropy_with_logits(
      labels=math_ops.cast(target, dtypes.float32), logits=logits)
  return loss_vec
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:7,代码来源:target_column.py


示例2: log_prob

  def log_prob(self, event, name="log_prob"):
    """Log of the probability mass function.

    Args:
      event: `int32` or `int64` binary Tensor.
      name: A name for this operation (optional).

    Returns:
      The log-probabilities of the events.
    """
    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent  behavior for logits = inf/-inf.
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self.logits, event]):
        event = ops.convert_to_tensor(event, name="event")
        event = math_ops.cast(event, self.logits.dtype)
        logits = self.logits
        # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
        # so we do this here.
        # TODO(b/30637701): Check dynamic shape, and don't broadcast if the
        # dynamic shapes are the same.
        if (not event.get_shape().is_fully_defined() or
            not logits.get_shape().is_fully_defined() or
            event.get_shape() != logits.get_shape()):
          logits = array_ops.ones_like(event) * logits
          event = array_ops.ones_like(logits) * event
        return -nn.sigmoid_cross_entropy_with_logits(logits, event)
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:27,代码来源:bernoulli.py


示例3: unregularized_loss

  def unregularized_loss(self, examples):
    """Add operations to compute the loss (without the regularization loss).

        Args:
          examples: Examples to compute unregularized loss on.

        Returns:
          An Operation that computes mean (unregularized) loss for given set of
          examples.
        Raises:
          ValueError: if examples are not well defined.
        """
    self._assertSpecified(
        ['example_labels', 'example_weights', 'sparse_features',
         'dense_features'], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)
    with name_scope('sdca/unregularized_loss'):
      predictions = self._linear_predictions(examples)
      labels = convert_to_tensor(examples['example_labels'])
      weights = convert_to_tensor(examples['example_weights'])

      if self._options['loss_type'] == 'logistic_loss':
        return math_ops.reduce_sum(math_ops.mul(
            sigmoid_cross_entropy_with_logits(
                predictions, labels), weights)) / math_ops.reduce_sum(weights)

      # squared loss
      err = math_ops.sub(labels, predictions)

      weighted_squared_err = math_ops.mul(math_ops.square(err), weights)
      return (math_ops.reduce_sum(weighted_squared_err) /
              math_ops.reduce_sum(weights))
开发者ID:4Quant,项目名称:tensorflow,代码行数:32,代码来源:sdca_ops.py


示例4: _log_loss_with_two_classes

def _log_loss_with_two_classes(logits, labels):
  # sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels.
  if len(labels.get_shape()) == 1:
    labels = array_ops.expand_dims(labels, dim=[1])
  loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
                                                  math_ops.to_float(labels))
  return loss_vec
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:7,代码来源:head.py


示例5: _log_prob

  def _log_prob(self, event):
    if self.validate_args:
      event = distribution_util.embed_check_integer_casting_closed(
          event, target_dtype=dtypes.bool)

    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent behavior for logits = inf/-inf.
    event = math_ops.cast(event, self.logits.dtype)
    logits = self.logits
    # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
    # so we do this here.

    def _broadcast(logits, event):
      return (array_ops.ones_like(event) * logits,
              array_ops.ones_like(logits) * event)

    # First check static shape.
    if (event.get_shape().is_fully_defined() and
        logits.get_shape().is_fully_defined()):
      if event.get_shape() != logits.get_shape():
        logits, event = _broadcast(logits, event)
    else:
      logits, event = control_flow_ops.cond(
          distribution_util.same_dynamic_shape(logits, event),
          lambda: (logits, event),
          lambda: _broadcast(logits, event))
    return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits)
开发者ID:NevesLucas,项目名称:tensorflow,代码行数:27,代码来源:bernoulli.py


示例6: _log_loss_with_two_classes

def _log_loss_with_two_classes(logits, target):
  # sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
  if len(target.get_shape()) == 1:
    target = array_ops.expand_dims(target, dim=[1])
  loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
                                                  math_ops.to_float(target))
  return loss_vec
开发者ID:caikehe,项目名称:tensorflow,代码行数:7,代码来源:head.py


示例7: create_loss

 def create_loss(self, features, mode, logits, labels):
   """See `Head`."""
   del mode  # Unused for this head.
   logits = ops.convert_to_tensor(logits)
   labels = _check_dense_labels_match_logits_and_reshape(
       labels=labels, logits=logits, expected_labels_dimension=1)
   if self._label_vocabulary is not None:
     labels = lookup_ops.index_table_from_tensor(
         vocabulary_list=tuple(self._label_vocabulary),
         name='class_id_lookup').lookup(labels)
   labels = math_ops.to_float(labels)
   labels = _assert_range(labels, 2)
   unweighted_loss = nn.sigmoid_cross_entropy_with_logits(
       labels=labels, logits=logits)
   weights = _get_weights_and_check_match_logits(
       features=features, weight_column=self._weight_column, logits=logits)
   weighted_sum_loss = losses.compute_weighted_loss(
       unweighted_loss, weights=weights, reduction=losses.Reduction.SUM)
   # _weights() can return 1.
   example_weight_sum = math_ops.reduce_sum(
       weights * array_ops.ones_like(unweighted_loss))
   return LossSpec(
       weighted_sum_loss=weighted_sum_loss,
       example_weight_sum=example_weight_sum,
       processed_labels=labels)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:25,代码来源:head.py


示例8: logistic

def logistic(logit, target, name=None):
  """Calculates the logistic cross-entropy loss, averaged across batches.

  **WARNING:** `logit` must be unscaled, while the `target` should be a
  normalized probability prediction. See
  `tf.nn.sigmoid_cross_entropy_with_logits` for more details.

  Args:
    logit: A `Tensor` of shape `[batch_size, dim_1, ..., dim_n]`
      of predicted logit values.
    target: A `Tensor` of shape `[batch_size, dim_1, ..., dim_n]` of
      target values. The shape of the target tensor should match the
      `logit` tensor.
    name: A name for the operation (optional).

  Returns:
    A scalar `tensor` of the logistic cross-entropy loss, averaged across
    batches.

  Raises:
    ValueError: If `logit` and `target` shapes do not match.
  """
  with ops.op_scope([logit, target], name, "logistic_loss") as scope:
    return _reduce_to_scalar(
        nn.sigmoid_cross_entropy_with_logits(logit, target), name=scope)
开发者ID:4chin,项目名称:tensorflow,代码行数:25,代码来源:loss_ops.py


示例9: unregularized_loss

  def unregularized_loss(self, examples):
    """Add operations to compute the loss (without the regularization loss).

    Args:
      examples: Examples to compute unregularized loss on.

    Returns:
      An Operation that computes mean (unregularized) loss for given set of
      examples.

    Raises:
      ValueError: if examples are not well defined.
    """
    self._assertSpecified([
        'example_labels', 'example_weights', 'sparse_features', 'dense_features'
    ], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)
    with name_scope('sdca/unregularized_loss'):
      predictions = math_ops.cast(
          self._linear_predictions(examples), dtypes.float64)
      labels = math_ops.cast(
          internal_convert_to_tensor(examples['example_labels']),
          dtypes.float64)
      weights = math_ops.cast(
          internal_convert_to_tensor(examples['example_weights']),
          dtypes.float64)

      if self._options['loss_type'] == 'logistic_loss':
        return math_ops.reduce_sum(math_ops.multiply(
            sigmoid_cross_entropy_with_logits(labels=labels,
                                              logits=predictions),
            weights)) / math_ops.reduce_sum(weights)

      if self._options['loss_type'] == 'poisson_loss':
        return math_ops.reduce_sum(math_ops.multiply(
            log_poisson_loss(targets=labels, log_input=predictions),
            weights)) / math_ops.reduce_sum(weights)

      if self._options['loss_type'] in ['hinge_loss', 'smooth_hinge_loss']:
        # hinge_loss = max{0, 1 - y_i w*x} where y_i \in {-1, 1}. So, we need to
        # first convert 0/1 labels into -1/1 labels.
        all_ones = array_ops.ones_like(predictions)
        adjusted_labels = math_ops.subtract(2 * labels, all_ones)
        # Tensor that contains (unweighted) error (hinge loss) per
        # example.
        error = nn_ops.relu(
            math_ops.subtract(all_ones,
                              math_ops.multiply(adjusted_labels, predictions)))
        weighted_error = math_ops.multiply(error, weights)
        return math_ops.reduce_sum(weighted_error) / math_ops.reduce_sum(
            weights)

      # squared loss
      err = math_ops.subtract(labels, predictions)

      weighted_squared_err = math_ops.multiply(math_ops.square(err), weights)
      # SDCA squared loss function is sum(err^2) / (2*sum(weights))
      return (math_ops.reduce_sum(weighted_squared_err) /
              (2.0 * math_ops.reduce_sum(weights)))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:59,代码来源:sdca_ops.py


示例10: sigmoid_cross_entropy

def sigmoid_cross_entropy(
    multi_class_labels, logits, weights=1.0, label_smoothing=0, scope=None,
    loss_collection=ops.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
  """Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.

  `weights` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weights` is a
  tensor of shape `[batch_size]`, then the loss weights apply to each
  corresponding sample.

  If `label_smoothing` is nonzero, smooth the labels towards 1/2:

      new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
                              + 0.5 * label_smoothing

  Args:
    multi_class_labels: `[batch_size, num_classes]` target integer labels in
      `(0, 1)`.
    logits: Float `[batch_size, num_classes]` logits outputs of the network.
    weights: Optional `Tensor` whose rank is either 0, or the same rank as
      `labels`, and must be broadcastable to `labels` (i.e., all dimensions must
      be either `1`, or the same as the corresponding `losses` dimension).
    label_smoothing: If greater than `0` then smooth the labels.
    scope: The scope for the operations performed in computing the loss.
    loss_collection: collection to which the loss will be added.
    reduction: Type of reduction to apply to loss.

  Returns:
    Weighted loss `Tensor` of the same type as `logits`. If `reduction` is
    `NONE`, this has the same shape as `logits`; otherwise, it is scalar.

  Raises:
    ValueError: If the shape of `logits` doesn't match that of
      `multi_class_labels` or if the shape of `weights` is invalid, or if
      `weights` is None.  Also if `multi_class_labels` or `logits` is None.
  """
  if multi_class_labels is None:
    raise ValueError("multi_class_labels must not be None.")
  if logits is None:
    raise ValueError("logits must not be None.")
  with ops.name_scope(scope, "sigmoid_cross_entropy_loss",
                      (logits, multi_class_labels, weights)) as scope:
    logits = ops.convert_to_tensor(logits)
    logging.info("logits.dtype=%s.", logits.dtype)
    multi_class_labels = math_ops.cast(multi_class_labels, logits.dtype)
    logging.info("multi_class_labels.dtype=%s.", multi_class_labels.dtype)
    logits.get_shape().assert_is_compatible_with(multi_class_labels.get_shape())

    if label_smoothing > 0:
      multi_class_labels = (multi_class_labels * (1 - label_smoothing) +
                            0.5 * label_smoothing)

    losses = nn.sigmoid_cross_entropy_with_logits(labels=multi_class_labels,
                                                  logits=logits,
                                                  name="xentropy")
    logging.info("losses.dtype=%s.", losses.dtype)
    return compute_weighted_loss(
        losses, weights, scope, loss_collection, reduction=reduction)
开发者ID:chdinh,项目名称:tensorflow,代码行数:59,代码来源:losses_impl.py


示例11: _log_loss_with_two_classes

def _log_loss_with_two_classes(logits, labels):
  with ops.name_scope(
      None, "log_loss_with_two_classes", (logits, labels)) as name:
    # sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels.
    if len(labels.get_shape()) == 1:
      labels = array_ops.expand_dims(labels, dim=(1,))
    return nn.sigmoid_cross_entropy_with_logits(
        logits, math_ops.to_float(labels), name=name)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:8,代码来源:head.py


示例12: testGradient

 def testGradient(self):
   sizes = [4, 2]
   with self.test_session():
     logits, targets, _ = self._Inputs(sizes=sizes)
     loss = nn.sigmoid_cross_entropy_with_logits(logits, targets)
     err = gc.ComputeGradientError(logits, sizes, loss, sizes)
   print "logistic loss gradient err = ", err
   self.assertLess(err, 1e-7)
开发者ID:nickicindy,项目名称:tensorflow,代码行数:8,代码来源:nn_test.py


示例13: testLogisticOutput

 def testLogisticOutput(self):
   for use_gpu in [True, False]:
     with self.test_session(use_gpu=use_gpu):
       logits, targets, losses = self._Inputs(dtype=types.float32)
       loss = nn.sigmoid_cross_entropy_with_logits(logits, targets)
       np_loss = np.array(losses).astype(np.float32)
       tf_loss = loss.eval()
     self.assertAllClose(np_loss, tf_loss, atol=0.001)
开发者ID:nickicindy,项目名称:tensorflow,代码行数:8,代码来源:nn_test.py


示例14: _log_loss_with_two_classes

def _log_loss_with_two_classes(logits, target):
  check_shape_op = control_flow_ops.Assert(
      math_ops.less_equal(array_ops.rank(target), 2),
      ["target's shape should be either [batch_size, 1] or [batch_size]"])
  with ops.control_dependencies([check_shape_op]):
    target = array_ops.reshape(target, shape=[array_ops.shape(target)[0], 1])
  return nn.sigmoid_cross_entropy_with_logits(
      logits, math_ops.to_float(target))
开发者ID:KalraA,项目名称:tensorflow,代码行数:8,代码来源:linear.py


示例15: sigmoid_cross_entropy

def sigmoid_cross_entropy(
    multi_class_labels, logits, weights=1.0, label_smoothing=0, scope=None,
    loss_collection=ops.GraphKeys.LOSSES):
  """Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.

  `weights` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weights` is a
  tensor of shape `[batch_size]`, then the loss weights apply to each
  corresponding sample.

  WARNING: `weights` also supports dimensions of 1, but the broadcasting does
  not work as advertised, you'll wind up with weighted sum instead of weighted
  mean for any but the last dimension. This will be cleaned up soon, so please
  do not rely on the current behavior for anything but the shapes documented for
  `weights` below.

  If `label_smoothing` is nonzero, smooth the labels towards 1/2:

      new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
                              + 0.5 * label_smoothing

  Args:
    multi_class_labels: `[batch_size, num_classes]` target integer labels in
      `(0, 1)`.
    logits: `[batch_size, num_classes]` logits outputs of the network.
    weights: Coefficients for the loss. This must be of shape `[]`,
      `[batch_size]` or `[batch_size, num_classes]`.
    label_smoothing: If greater than `0` then smooth the labels.
    scope: The scope for the operations performed in computing the loss.
    loss_collection: collection to which the loss will be added.

  Returns:
    A scalar `Tensor` representing the loss value.

  Raises:
    ValueError: If the shape of `logits` doesn't match that of
      `multi_class_labels` or if the shape of `weights` is invalid, or if
      `weights` is None.
  """
  with ops.name_scope(scope, "sigmoid_cross_entropy_loss",
                      (logits, multi_class_labels, weights)) as scope:
    logits = ops.convert_to_tensor(logits)
    multi_class_labels = math_ops.cast(multi_class_labels, logits.dtype)
    logits.get_shape().assert_is_compatible_with(multi_class_labels.get_shape())

    if label_smoothing > 0:
      multi_class_labels = (multi_class_labels * (1 - label_smoothing) +
                            0.5 * label_smoothing)

    losses = nn.sigmoid_cross_entropy_with_logits(labels=multi_class_labels,
                                                  logits=logits,
                                                  name="xentropy")
    return compute_weighted_loss(losses, weights, scope, loss_collection)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:53,代码来源:losses_impl.py


示例16: create_loss

 def create_loss(self, features, mode, logits, labels):
   """See `Head`."""
   del mode, features  # Unused for this head.
   labels = _check_and_reshape_dense_labels(labels, self.logits_dimension)
   if self._label_vocabulary is not None:
     labels = lookup_ops.index_table_from_tensor(
         vocabulary_list=tuple(self._label_vocabulary),
         name='class_id_lookup').lookup(labels)
   labels = math_ops.to_float(labels)
   labels = _assert_range(labels, 2)
   return LossAndLabels(
       unweighted_loss=nn.sigmoid_cross_entropy_with_logits(
           labels=labels, logits=logits),
       processed_labels=labels)
开发者ID:rajeev921,项目名称:tensorflow,代码行数:14,代码来源:head.py


示例17: deprecated_flipped_sigmoid_cross_entropy_with_logits

def deprecated_flipped_sigmoid_cross_entropy_with_logits(logits,
                                                         targets,
                                                         name=None):
  """Computes sigmoid cross entropy given `logits`.

  This function diffs from tf.nn.sigmoid_cross_entropy_with_logits only in the
  argument order.

  Measures the probability error in discrete classification tasks in which each
  class is independent and not mutually exclusive.  For instance, one could
  perform multilabel classification where a picture can contain both an elephant
  and a dog at the same time.

  For brevity, let `x = logits`, `z = targets`.  The logistic loss is

        z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
      = (1 - z) * x + log(1 + exp(-x))
      = x - x * z + log(1 + exp(-x))

  For x < 0, to avoid overflow in exp(-x), we reformulate the above

        x - x * z + log(1 + exp(-x))
      = log(exp(x)) - x * z + log(1 + exp(-x))
      = - x * z + log(1 + exp(x))

  Hence, to ensure stability and avoid overflow, the implementation uses this
  equivalent formulation

      max(x, 0) - x * z + log(1 + exp(-abs(x)))

  `logits` and `targets` must have the same type and shape.

  Args:
    logits: A `Tensor` of type `float32` or `float64`.
    targets: A `Tensor` of the same type and shape as `logits`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of the same shape as `logits` with the componentwise
    logistic losses.

  Raises:
    ValueError: If `logits` and `targets` do not have the same shape.
  """
  return nn.sigmoid_cross_entropy_with_logits(
      labels=targets, logits=logits, name=name)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:49,代码来源:cross_entropy.py


示例18: _loss

    def _loss(self, logits, target, weight_tensor):
        if self._n_classes < 2:
            loss_vec = math_ops.square(logits - math_ops.to_float(target))
        elif self._n_classes == 2:
            loss_vec = nn.sigmoid_cross_entropy_with_logits(logits, math_ops.to_float(target))
        else:
            loss_vec = nn.sparse_softmax_cross_entropy_with_logits(logits, array_ops.reshape(target, [-1]))

        if weight_tensor is None:
            return math_ops.reduce_mean(loss_vec, name="loss")
        else:
            loss_vec = array_ops.reshape(loss_vec, shape=(-1,))
            loss_vec = math_ops.mul(loss_vec, array_ops.reshape(weight_tensor, shape=(-1,)))
            return math_ops.div(
                math_ops.reduce_sum(loss_vec), math_ops.to_float(math_ops.reduce_sum(weight_tensor)), name="loss"
            )
开发者ID:ninotoshi,项目名称:tensorflow,代码行数:16,代码来源:dnn_linear_combined.py


示例19: per_example_logistic_loss

def per_example_logistic_loss(labels, weights, predictions):
  """Logistic loss given labels, example weights and predictions.

  Args:
    labels: Rank 2 (N, 1) tensor of per-example labels.
    weights: Rank 2 (N, 1) tensor of per-example weights.
    predictions: Rank 2 (N, 1) tensor of per-example predictions.

  Returns:
    loss: A Rank 2 (N, 1) tensor of per-example logistic loss.
    update_op: An update operation to update the loss's internal state.
  """
  labels = math_ops.to_float(labels)
  unweighted_loss = nn.sigmoid_cross_entropy_with_logits(
      labels=labels, logits=predictions)
  return unweighted_loss * weights, control_flow_ops.no_op()
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:16,代码来源:losses.py


示例20: _log_prob

 def _log_prob(self, event):
   # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
   # inconsistent  behavior for logits = inf/-inf.
   event = ops.convert_to_tensor(event, name="event")
   event = math_ops.cast(event, self.logits.dtype)
   logits = self.logits
   # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
   # so we do this here.
   # TODO(b/30637701): Check dynamic shape, and don't broadcast if the
   # dynamic shapes are the same.
   if (not event.get_shape().is_fully_defined() or
       not logits.get_shape().is_fully_defined() or
       event.get_shape() != logits.get_shape()):
     logits = array_ops.ones_like(event) * logits
     event = array_ops.ones_like(logits) * event
   return -nn.sigmoid_cross_entropy_with_logits(logits, event)
开发者ID:Nishant23,项目名称:tensorflow,代码行数:16,代码来源:bernoulli.py



注:本文中的tensorflow.python.ops.nn.sigmoid_cross_entropy_with_logits函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python nn.softmax函数代码示例发布时间:2022-05-27
下一篇:
Python nn.relu函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap