• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python metrics.auc函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.metrics.auc函数的典型用法代码示例。如果您正苦于以下问题:Python auc函数的具体用法?Python auc怎么用?Python auc使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了auc函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _eval_metric_ops

 def _eval_metric_ops(
     self, labels, probabilities, weights, unreduced_loss,
     regularization_loss):
   """Returns a dict of metrics for eval_metric_ops."""
   with ops.name_scope(
       None, 'metrics',
       [labels, probabilities, weights, unreduced_loss, regularization_loss]):
     keys = metric_keys.MetricKeys
     metric_ops = {
         # Estimator already adds a metric for loss.
         head_lib._summary_key(self._name, keys.LOSS_MEAN):  # pylint:disable=protected-access
             metrics_lib.mean(
                 values=unreduced_loss,
                 weights=weights,
                 name=keys.LOSS_MEAN),
         head_lib._summary_key(self._name, keys.AUC):  # pylint:disable=protected-access
             metrics_lib.auc(labels=labels, predictions=probabilities,
                             weights=weights, name=keys.AUC),
         head_lib._summary_key(self._name, keys.AUC_PR):  # pylint:disable=protected-access
             metrics_lib.auc(labels=labels, predictions=probabilities,
                             weights=weights, curve='PR',
                             name=keys.AUC_PR),
     }
     if regularization_loss is not None:
       loss_regularization_key = head_lib._summary_key(  # pylint:disable=protected-access
           self._name, keys.LOSS_REGULARIZATION)
       metric_ops[loss_regularization_key] = (
           metrics_lib.mean(
               values=regularization_loss,
               name=keys.LOSS_REGULARIZATION))
     for threshold in self._thresholds:
       accuracy_key = keys.ACCURACY_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, accuracy_key)] = (  # pylint:disable=protected-access
           head_lib._accuracy_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=accuracy_key))
       # Precision for positive examples.
       precision_key = keys.PRECISION_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, precision_key)] = (  # pylint:disable=protected-access
           head_lib._precision_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=precision_key))
       # Recall for positive examples.
       recall_key = keys.RECALL_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, recall_key)] = (  # pylint:disable=protected-access
           head_lib._recall_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=recall_key))
   return metric_ops
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:58,代码来源:head.py


示例2: _eval_metric_ops

 def _eval_metric_ops(self, labels, probabilities, weights, weighted_sum_loss,
                      example_weight_sum):
   """Returns a dict of metrics for eval_metric_ops."""
   with ops.name_scope(
       None, 'metrics',
       [labels, probabilities, weights, weighted_sum_loss, example_weight_sum
       ]):
     keys = metric_keys.MetricKeys
     metric_ops = {
         # Estimator already adds a metric for loss.
         head_lib._summary_key(self._name, keys.LOSS_MEAN):  # pylint:disable=protected-access
             metrics_lib.mean(
                 # Both values and weights here are reduced, scalar Tensors.
                 # values is the actual mean we want, but we pass the scalar
                 # example_weight_sum in order to return the correct update_op
                 # alongside the value_op for streaming metrics.
                 values=(weighted_sum_loss / example_weight_sum),
                 weights=example_weight_sum,
                 name=keys.LOSS_MEAN),
         head_lib._summary_key(self._name, keys.AUC):  # pylint:disable=protected-access
             metrics_lib.auc(labels=labels, predictions=probabilities,
                             weights=weights, name=keys.AUC),
         head_lib._summary_key(self._name, keys.AUC_PR):  # pylint:disable=protected-access
             metrics_lib.auc(labels=labels, predictions=probabilities,
                             weights=weights, curve='PR',
                             name=keys.AUC_PR),
     }
     for threshold in self._thresholds:
       accuracy_key = keys.ACCURACY_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, accuracy_key)] = (  # pylint:disable=protected-access
           head_lib._accuracy_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=accuracy_key))
       # Precision for positive examples.
       precision_key = keys.PRECISION_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, precision_key)] = (  # pylint:disable=protected-access
           head_lib._precision_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=precision_key))
       # Recall for positive examples.
       recall_key = keys.RECALL_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, recall_key)] = (  # pylint:disable=protected-access
           head_lib._recall_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=recall_key))
   return metric_ops
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:55,代码来源:head.py


示例3: model_fn

  def model_fn(self, mode, features, labels, params):
    c = variable_scope.get_variable(
        'c',
        initializer=constant_op.constant(10, dtype=dtypes.float64),
        dtype=dtypes.float64)

    predictions = math_ops.multiply(features, c)

    loss = None
    if mode is not model_fn_lib.ModeKeys.PREDICT:
      loss = losses.absolute_difference(
          labels=labels,
          predictions=predictions,
          reduction=losses.Reduction.SUM)
      loss = math_ops.reduce_sum(loss)

    metrics = {
        'accuracy': metrics_lib.accuracy(labels, predictions),
        'auc': metrics_lib.auc(labels, predictions)
    }

    return model_fn_lib.EstimatorSpec(
        mode=mode,
        loss=loss,
        eval_metric_ops=metrics,
        predictions={'probabilities': predictions},
        train_op=control_flow_ops.no_op())  # This train_op isn't actually used.
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:27,代码来源:replicate_model_fn_test.py


示例4: _auc

def _auc(labels, predictions, weights=None, curve='ROC', name=None):
  with ops.name_scope(name, 'auc', (predictions, labels, weights)) as scope:
    predictions = math_ops.to_float(predictions, name='predictions')
    if weights is not None:
      weights = weights_broadcast_ops.broadcast_weights(weights, predictions)
    return metrics_lib.auc(
        labels=labels, predictions=predictions, weights=weights, curve=curve,
        name=scope)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:8,代码来源:head.py


示例5: create_eval_metrics

  def create_eval_metrics(self, noise):
    predictions = np.array([0.1, 0.2, 0.3, 0.6 + noise])
    labels = np.array([0.1, 0.2, 0.3, 0.6])

    metrics = {
        'accuracy': metrics_lib.accuracy(labels, predictions),
        'auc': metrics_lib.auc(labels, predictions)
    }
    return metrics
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:9,代码来源:replicate_model_fn_test.py


示例6: _auc

def _auc(labels, predictions, weights=None, curve='ROC', name=None):
  with ops.name_scope(name, 'auc', (predictions, labels, weights)) as scope:
    predictions = math_ops.to_float(predictions, name='predictions')
    if labels.dtype.base_dtype != dtypes.bool:
      logging.warning('Casting %s labels to bool.', labels.dtype)
      labels = math_ops.cast(labels, dtypes.bool)
    if weights is not None:
      weights = weights_broadcast_ops.broadcast_weights(weights, predictions)
    return metrics_lib.auc(
        labels=labels, predictions=predictions, weights=weights, curve=curve,
        name=scope)
开发者ID:vaccine,项目名称:tensorflow,代码行数:11,代码来源:head.py


示例7: _metric_fn

 def _metric_fn(x):
   labels = x["labels"]
   predictions = x["predictions"]
   return metrics.auc(labels, predictions, num_thresholds=8, curve="PR",
                      summation_method="careful_interpolation")
开发者ID:AndreasGocht,项目名称:tensorflow,代码行数:5,代码来源:metrics_v1_test.py


示例8: _eval_metric_ops

 def _eval_metric_ops(
     self, labels, probabilities, weights, unreduced_loss,
     regularization_loss):
   """Returns a dict of metrics for eval_metric_ops."""
   with ops.name_scope(
       None, 'metrics',
       [labels, probabilities, weights, unreduced_loss, regularization_loss]):
     keys = metric_keys.MetricKeys
     metric_ops = {
         # Estimator already adds a metric for loss.
         head_lib._summary_key(self._name, keys.LOSS_MEAN):  # pylint:disable=protected-access
             metrics_lib.mean(
                 values=unreduced_loss,
                 weights=weights,
                 name=keys.LOSS_MEAN),
         head_lib._summary_key(self._name, keys.AUC):  # pylint:disable=protected-access
             metrics_lib.auc(labels=labels, predictions=probabilities,
                             weights=weights, name=keys.AUC),
         head_lib._summary_key(self._name, keys.AUC_PR):  # pylint:disable=protected-access
             metrics_lib.auc(labels=labels, predictions=probabilities,
                             weights=weights, curve='PR',
                             name=keys.AUC_PR),
     }
     if regularization_loss is not None:
       loss_regularization_key = head_lib._summary_key(  # pylint:disable=protected-access
           self._name, keys.LOSS_REGULARIZATION)
       metric_ops[loss_regularization_key] = (
           metrics_lib.mean(
               values=regularization_loss,
               name=keys.LOSS_REGULARIZATION))
     for threshold in self._thresholds:
       accuracy_key = keys.ACCURACY_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, accuracy_key)] = (  # pylint:disable=protected-access
           head_lib._accuracy_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=accuracy_key))
       # Precision for positive examples.
       precision_key = keys.PRECISION_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, precision_key)] = (  # pylint:disable=protected-access
           head_lib._precision_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=precision_key))
       # Recall for positive examples.
       recall_key = keys.RECALL_AT_THRESHOLD % threshold
       metric_ops[head_lib._summary_key(self._name, recall_key)] = (  # pylint:disable=protected-access
           head_lib._recall_at_threshold(  # pylint:disable=protected-access
               labels=labels,
               predictions=probabilities,
               weights=weights,
               threshold=threshold,
               name=recall_key))
     for class_id in self._classes_for_class_based_metrics:
       batch_rank = array_ops.rank(probabilities) - 1
       begin = array_ops.concat(
           [array_ops.zeros([batch_rank], dtype=dtypes.int32), [class_id]],
           axis=0)
       size = array_ops.concat(
           [-1 * array_ops.ones([batch_rank], dtype=dtypes.int32), [1]],
           axis=0)
       class_probabilities = array_ops.slice(
           probabilities, begin=begin, size=size)
       class_labels = array_ops.slice(labels, begin=begin, size=size)
       prob_key = keys.PROBABILITY_MEAN_AT_CLASS % class_id
       metric_ops[head_lib._summary_key(self._name, prob_key)] = (  # pylint:disable=protected-access
           head_lib._predictions_mean(  # pylint:disable=protected-access
               predictions=class_probabilities,
               weights=weights,
               name=prob_key))
       auc_key = keys.AUC_AT_CLASS % class_id
       metric_ops[head_lib._summary_key(self._name, auc_key)] = (  # pylint:disable=protected-access
           head_lib._auc(  # pylint:disable=protected-access
               labels=class_labels,
               predictions=class_probabilities,
               weights=weights,
               name=auc_key))
       auc_pr_key = keys.AUC_PR_AT_CLASS % class_id
       metric_ops[head_lib._summary_key(self._name, auc_pr_key)] = (  # pylint:disable=protected-access
           head_lib._auc(  # pylint:disable=protected-access
               labels=class_labels,
               predictions=class_probabilities,
               weights=weights,
               curve='PR',
               name=auc_pr_key))
   return metric_ops
开发者ID:didukhle,项目名称:tensorflow,代码行数:90,代码来源:head.py


示例9: _auc

def _auc(probs, targets, weights=None):
  return metrics.auc(
      labels=targets,
      predictions=array_ops.slice(probs, [0, 1], [-1, 1]),
      weights=weights)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:5,代码来源:eval_metrics.py



注:本文中的tensorflow.python.ops.metrics.auc函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python metrics.mean函数代码示例发布时间:2022-05-27
下一篇:
Python metrics.accuracy函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap