本文整理汇总了Python中tensorflow.python.ops.math_ops.to_int32函数的典型用法代码示例。如果您正苦于以下问题:Python to_int32函数的具体用法?Python to_int32怎么用?Python to_int32使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了to_int32函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: linear_decay_fn
def linear_decay_fn(global_step):
if global_step is None:
raise ValueError("global_step is required for linear_decay.")
global_step = math_ops.minimum(global_step, decay_steps)
remaining_steps = math_ops.to_int32(decay_steps) - math_ops.to_int32(
global_step)
decayed = math_ops.to_float(remaining_steps) / math_ops.to_float(
decay_steps)
return math_ops.maximum(0.0, decayed)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:9,代码来源:sign_decay.py
示例2: _compute_accuracy
def _compute_accuracy(logits, targets, weights=None):
if self._n_classes > 2:
_, predictions = nn.top_k(logits, 1)
else:
predictions = array_ops.reshape(logits, [-1])
predictions = math_ops.greater(predictions,
array_ops.zeros_like(predictions))
targets = array_ops.reshape(targets, [-1])
return metrics_lib.streaming_accuracy(
math_ops.to_int32(predictions), math_ops.to_int32(targets), weights)
开发者ID:01-,项目名称:tensorflow,代码行数:10,代码来源:dnn_linear_combined.py
示例3: update_medoid_per_cluster
def update_medoid_per_cluster(pairwise_distances, pairwise_distances_subset,
labels, chosen_ids, cluster_member_ids,
cluster_idx, margin_multiplier, margin_type):
"""Updates the cluster medoid per cluster.
Args:
pairwise_distances: 2-D Tensor of pairwise distances.
pairwise_distances_subset: 2-D Tensor of pairwise distances for one cluster.
labels: 1-D Tensor of ground truth cluster assignment.
chosen_ids: 1-D Tensor of cluster centroid indices.
cluster_member_ids: 1-D Tensor of cluster member indices for one cluster.
cluster_idx: Index of this one cluster.
margin_multiplier: multiplication constant.
margin_type: Type of structured margin to use. Default is nmi.
Returns:
chosen_ids: Updated 1-D Tensor of cluster centroid indices.
"""
def func_cond(iteration, scores_margin):
del scores_margin # Unused variable scores_margin.
return iteration < num_candidates
def func_body(iteration, scores_margin):
# swap the current medoid with the candidate cluster member
candidate_medoid = math_ops.to_int32(cluster_member_ids[iteration])
tmp_chosen_ids = update_1d_tensor(chosen_ids, cluster_idx, candidate_medoid)
predictions = get_cluster_assignment(pairwise_distances, tmp_chosen_ids)
metric_score = compute_clustering_score(labels, predictions, margin_type)
pad_before = array_ops.zeros([iteration])
pad_after = array_ops.zeros([num_candidates - 1 - iteration])
return iteration + 1, scores_margin + array_ops.concat(
[pad_before, [1.0 - metric_score], pad_after], 0)
# pairwise_distances_subset is of size [p, 1, 1, p],
# the intermediate dummy dimensions at
# [1, 2] makes this code work in the edge case where p=1.
# this happens if the cluster size is one.
scores_fac = -1.0 * math_ops.reduce_sum(
array_ops.squeeze(pairwise_distances_subset, [1, 2]), axis=0)
iteration = array_ops.constant(0)
num_candidates = array_ops.size(cluster_member_ids)
scores_margin = array_ops.zeros([num_candidates])
_, scores_margin = control_flow_ops.while_loop(func_cond, func_body,
[iteration, scores_margin])
candidate_scores = math_ops.add(scores_fac, margin_multiplier * scores_margin)
argmax_index = math_ops.to_int32(
math_ops.argmax(candidate_scores, dimension=0))
best_medoid = math_ops.to_int32(cluster_member_ids[argmax_index])
chosen_ids = update_1d_tensor(chosen_ids, cluster_idx, best_medoid)
return chosen_ids
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:55,代码来源:metric_loss_ops.py
示例4: _class_predictions_streaming_mean
def _class_predictions_streaming_mean(
predictions, labels, weights=None, class_id=None):
del labels
return metrics_lib.streaming_mean(
array_ops.where(
math_ops.equal(
math_ops.to_int32(class_id),
math_ops.to_int32(predictions)),
array_ops.ones_like(predictions),
array_ops.zeros_like(predictions)),
weights=weights)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:11,代码来源:head.py
示例5: testListOfScalarTensors
def testListOfScalarTensors(self):
a = math_ops.to_int32(5)
b = math_ops.to_int32(6)
value = np.random.rand(11, 11)
with self.test_session(use_gpu=False) as sess:
result = sess.run(array_ops.split(value, [a, b]))
self.assertAllEqual(result[0], value[0:5, :])
self.assertAllEqual(result[1], value[5:, :])
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:11,代码来源:split_op_test.py
示例6: testListOfScalarTensors
def testListOfScalarTensors(self):
a = math_ops.to_int32(5)
b = math_ops.to_int32(6)
value = np.random.rand(11, 11)
with test_util.device(use_gpu=True):
result = self.evaluate(array_ops.split(value, [a, b]))
self.assertAllEqual(result[0], value[0:5, :])
self.assertAllEqual(result[1], value[5:, :])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:11,代码来源:split_op_test.py
示例7: _randomize
def _randomize(coeffs, radixes, seed=None):
"""Applies the Owen randomization to the coefficients."""
given_dtype = coeffs.dtype
coeffs = math_ops.to_int32(coeffs)
num_coeffs = array_ops.shape(coeffs)[-1]
radixes = array_ops.reshape(math_ops.to_int32(radixes), [-1])
perms = _get_permutations(num_coeffs, radixes, seed=seed)
perms = array_ops.reshape(perms, [-1])
radix_sum = math_ops.reduce_sum(radixes)
radix_offsets = array_ops.reshape(math_ops.cumsum(radixes, exclusive=True),
[-1, 1])
offsets = radix_offsets + math_ops.range(num_coeffs) * radix_sum
permuted_coeffs = array_ops.gather(perms, coeffs + offsets)
return math_ops.cast(permuted_coeffs, dtype=given_dtype)
开发者ID:QiangCai,项目名称:tensorflow,代码行数:14,代码来源:halton_sequence_impl.py
示例8: one_hot_mask
def one_hot_mask(labels, num_classes, scope=None):
"""Compute 1-hot encodings for masks.
Given a label image, this computes the one hot encoding at
each pixel.
Args:
labels: (batch_size, width, height, 1) tensor containing labels.
num_classes: number of classes
scope: optional scope name
Returns:
Tensor of shape (batch_size, width, height, num_classes) with
a 1-hot encoding.
"""
with ops.name_scope(scope, "OneHotMask", [labels]):
height, width, depth = _shape(labels)
assert depth == 1
sparse_labels = math_ops.to_int32(array_ops.reshape(labels, [-1, 1]))
sparse_size, _ = _shape(sparse_labels)
indices = array_ops.reshape(math_ops.range(0, sparse_size, 1), [-1, 1])
concated = array_ops.concat([indices, sparse_labels], 1)
dense_result = sparse_ops.sparse_to_dense(concated,
[sparse_size, num_classes], 1.0,
0.0)
result = array_ops.reshape(dense_result, [height, width, num_classes])
return result
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:misc.py
示例9: get_best
def get_best(self, n):
"""Return the indices and values of the n highest scores in the TopN."""
def refresh_shortlist():
"""Update the shortlist with the highest scores in id_to_score."""
new_scores, new_ids = nn_ops.top_k(self.id_to_score, self.shortlist_size)
smallest_new_score = math_ops.reduce_min(new_scores)
new_length = math_ops.reduce_sum(
math_ops.to_int32(math_ops.greater(new_scores, dtypes.float32.min)))
u1 = self.sl_ids.assign(
math_ops.to_int64(array_ops.concat([[new_length], new_ids], 0)))
u2 = self.sl_scores.assign(
array_ops.concat([[smallest_new_score], new_scores], 0))
self.last_ops = [u1, u2]
return control_flow_ops.group(u1, u2)
# We only need to refresh the shortlist if n is greater than the
# current shortlist size (which is stored in sl_ids[0]).
with ops.control_dependencies(self.last_ops):
cond_op = control_flow_ops.cond(n > self.sl_ids[0], refresh_shortlist,
control_flow_ops.no_op)
with ops.control_dependencies([cond_op]):
topk_values, topk_indices = nn_ops.top_k(
self.sl_scores,
math_ops.minimum(n, math_ops.to_int32(self.sl_ids[0])))
# topk_indices are the indices into the shortlist, we want to return
# the indices into id_to_score
gathered_indices = array_ops.gather(self.sl_ids, topk_indices)
return gathered_indices, topk_values
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:29,代码来源:topn.py
示例10: _compute_zeroone_score
def _compute_zeroone_score(labels, predictions):
zeroone_score = math_ops.to_float(
math_ops.equal(
math_ops.reduce_sum(
math_ops.to_int32(math_ops.equal(labels, predictions))),
array_ops.shape(labels)[0]))
return zeroone_score
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:metric_loss_ops.py
示例11: _compute_power_svd
def _compute_power_svd(self, var, mat_g, mat_g_size, alpha, mat_h_slot_name):
"""Computes mat_h = mat_g^alpha using svd. mat_g is a symmetric PSD matrix.
Args:
var: the variable we are updating.
mat_g: the symmetric PSD matrix whose power it to be computed
mat_g_size: size of mat_g
alpha: a real number
mat_h_slot_name: name of slot to store the power, if needed.
Returns:
mat_h = mat_g^alpha
Stores mat_h in the appropriate slot, if it exists.
Note that mat_g is PSD. So we could use linalg_ops.self_adjoint_eig.
"""
if mat_g_size == 1:
mat_h = math_ops.pow(mat_g + self._epsilon, alpha)
else:
damping = self._epsilon * linalg_ops.eye(math_ops.to_int32(mat_g_size))
diag_d, mat_u, mat_v = linalg_ops.svd(mat_g + damping, full_matrices=True)
mat_h = math_ops.matmul(
mat_v * math_ops.pow(math_ops.maximum(diag_d, self._epsilon), alpha),
array_ops.transpose(mat_u))
if mat_h_slot_name is not None:
return state_ops.assign(self.get_slot(var, mat_h_slot_name), mat_h)
return mat_h
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:27,代码来源:shampoo.py
示例12: average_impurity
def average_impurity(self):
"""Constructs a TF graph for evaluating the average leaf impurity of a tree.
If in regression mode, this is the leaf variance. If in classification mode,
this is the gini impurity.
Returns:
The last op in the graph.
"""
children = array_ops.squeeze(array_ops.slice(
self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1])
is_leaf = math_ops.equal(constants.LEAF_NODE, children)
leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf),
squeeze_dims=[1]))
counts = array_ops.gather(self.variables.node_sums, leaves)
gini = self._weighted_gini(counts)
# Guard against step 1, when there often are no leaves yet.
def impurity():
return gini
# Since average impurity can be used for loss, when there's no data just
# return a big number so that loss always decreases.
def big():
return array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.
return control_flow_ops.cond(math_ops.greater(
array_ops.shape(leaves)[0], 0), impurity, big)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:25,代码来源:tensor_forest.py
示例13: Backward
def Backward(*args):
"""Backward pass for the recurrent net."""
# theta, state0, inputs are Forward's inputs.
# acc_state is the accumulated 1st output of Forward.
# acc_extras is the accumulated 2nd output of Forward.
# d_acc_state is the gradient for acc_state.
# d_state1 is the gradient for the final state computed by Forward.
(theta, state0, inputs, max_input_length, acc_state, acc_extras,
d_acc_state, d_state1) = _Pack(args, backward_sig)
# Accumulators for gradients.
d_theta = _EmptyLike(theta)
d_inputs = _EmptyLike(inputs)
# Loop backwards. Note the loop's limit is open-ended, so goes through
# t=0.
t = max_input_length - 1
dev_t = math_ops.to_int32(t) if use_tpu else math_ops.to_int64(t)
run = functional_ops.For(
start=t,
limit=-1,
delta=-1,
inputs=[dev_t] + _Flatten([
theta, state0, inputs, acc_state, acc_extras, d_theta, d_state1,
d_inputs, d_acc_state
]),
body=BackwardLoopBody,
rewrite_with_while=compiled)
(theta, state0, inputs, acc_state, acc_extras, d_theta, d_state0,
d_inputs, d_acc_state) = _Pack(run[1:], bakloop_sig)
d_max_input_length = array_ops.constant(0, dtype=max_input_length.dtype)
return _Flatten(
[d_theta, d_state0, d_inputs, d_max_input_length, acc_extras])
开发者ID:AnishShah,项目名称:tensorflow,代码行数:35,代码来源:recurrent.py
示例14: has_zero
def has_zero():
# Insert a zero in the consecutive ids where zero appears in unique_ids.
# id_is_zero has length 1.
zero_id_ind = math_ops.to_int32(id_is_zero[0])
ids_before = nonzero_consecutive_ids[:zero_id_ind]
ids_after = nonzero_consecutive_ids[zero_id_ind:]
return array_ops.concat([ids_before, [0], ids_after], axis=0)
开发者ID:Eagle732,项目名称:tensorflow,代码行数:7,代码来源:image_ops.py
示例15: _Update
def _Update(struct_acc, struct_x, t):
"""Updates t-th row in accumulators.
Args:
struct_acc: The accumulators. A structure of tensors.
struct_x: The new values. A structure of tensors congruent to `struct_acc`.
t: A scalar integer. Performance is better if `t` is on the device
memory.
Returns:
A structure of tensors. Say, ret is a returned dictionary. Then, for
each key, we have:
ret[key] = struct_acc[key];
ret[key][t, :] = struct_x[key]
"""
to_skip_update = set()
acc_lst = nest.flatten(struct_acc)
x_lst = nest.flatten(struct_x)
t = math_ops.to_int32([t]) # tf.to_int32 casts on-device tensors.
lst = []
for acc, x in zip(acc_lst, x_lst):
if acc in to_skip_update:
# Until b/62105730 is fixed, we need to avoid inplace update for tensors
# of rank 1. could reshape to handle it, but we don't really need the
# values applied to these, so just skip their modification.
lst += [acc]
else:
lst += [alias_inplace_update(acc, t, array_ops.expand_dims(x, 0))]
return nest.pack_sequence_as(struct_acc, lst)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:29,代码来源:recurrent.py
示例16: defun_fn
def defun_fn(x):
@function.Defun(dtypes.int32)
def defun_fn_deep(x):
return constant_op.constant(1000) + math_ops.to_int32(x)
return constant_op.constant(11000) + defun_fn_deep(math_ops.to_int32(x))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:map_dataset_op_test.py
示例17: _inplace_helper
def _inplace_helper(x, i, v, op):
"""Applies an inplace op on (x, i, v).
op is one of gen_array_ops.alias_inplace_update,
gen_array_ops.alias_inplace_add, or gen_array_ops.alias_inplace_sub.
If i is None, x and v must be the same shape. Computes
x op v;
If i is a scalar, x has a rank 1 higher than v's. Computes
x[i, :] op v;
Otherwise, x and v must have the same rank. Computes
x[i, :] op v;
Args:
x: A Tensor.
i: None, a scalar or a vector.
v: A Tensor.
op: alias_inplace_update, alias_inplace_add, or alias_inplace_sub.
Returns:
Returns x.
"""
x = ops.convert_to_tensor(x)
v = ops.convert_to_tensor(v, x.dtype)
if i is None:
# Full tensor.
return array_ops.reshape(
op(array_ops.reshape(x, [1, -1]), [0], array_ops.reshape(v, [1, -1])),
array_ops.shape(x))
i = math_ops.to_int32(i)
if i.get_shape().ndims == 0:
# Single 0-dim update.
return op(x, array_ops.reshape(i, [1]), array_ops.expand_dims(v, 0))
return op(x, i, v)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:35,代码来源:inplace_ops.py
示例18: finalize
def finalize(self, outputs, final_state, sequence_lengths):
"""Finalize and return the predicted_ids.
Args:
outputs: An instance of BeamSearchDecoderOutput.
final_state: An instance of BeamSearchDecoderState. Passed through to the
output.
sequence_lengths: An `int64` tensor shaped `[batch_size, beam_width]`.
The sequence lengths determined for each beam during decode.
**NOTE** These are ignored; the updated sequence lengths are stored in
`final_state.lengths`.
Returns:
outputs: An instance of `FinalBeamSearchDecoderOutput` where the
predicted_ids are the result of calling _gather_tree.
final_state: The same input instance of `BeamSearchDecoderState`.
"""
del sequence_lengths
# Get max_sequence_length across all beams for each batch.
max_sequence_lengths = math_ops.to_int32(
math_ops.reduce_max(final_state.lengths, axis=1))
predicted_ids = beam_search_ops.gather_tree(
outputs.predicted_ids,
outputs.parent_ids,
max_sequence_lengths=max_sequence_lengths,
end_token=self._end_token)
outputs = FinalBeamSearchDecoderOutput(
beam_search_decoder_output=outputs, predicted_ids=predicted_ids)
return outputs, final_state
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:29,代码来源:beam_search_decoder.py
示例19: Forward
def Forward(*args):
"""Forward pass of the recurrent net."""
theta, state0, inputs, max_input_length, extras = _Pack(args, forward_sig)
slen_dim = _SeqLenDim(inputs)
# Creates accumulators for state0 and extras.
acc_state = _EmptyAcc(slen_dim, state0)
acc_extras = _EmptyAcc(slen_dim, extras)
t = slen_dim - max_input_length if self._aligned_end else 0
dev_t = math_ops.to_int32(t) if use_tpu else math_ops.to_int64(t)
run = functional_ops.For(
start=t,
limit=slen_dim if self._aligned_end else max_input_length,
delta=1,
inputs=[dev_t] + _Flatten(
[theta, state0, inputs, acc_state, acc_extras]),
body=ForwardLoopBody,
rewrite_with_while=compiled)
_, state1, _, acc_state, acc_extras = _Pack(
run[1:],
[self._theta, self._state, self._inputs, self._state, self._extras])
return _Flatten([acc_state, state1, acc_extras])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:25,代码来源:recurrent.py
示例20: testGradientWithIntegerPath
def testGradientWithIntegerPath(self):
x = constant_op.constant([3.9, 4.1])
k = math_ops.to_float(math_ops.to_int32(x))
y = x * k
dy_dx, = gradients_impl.gradients(y, x)
with self.cached_session() as sess:
self.assertAllClose([3., 4.], sess.run(dy_dx))
开发者ID:HughKu,项目名称:tensorflow,代码行数:7,代码来源:gradient_correctness_test.py
注:本文中的tensorflow.python.ops.math_ops.to_int32函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论