• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python math_ops.sign函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.math_ops.sign函数的典型用法代码示例。如果您正苦于以下问题:Python sign函数的具体用法?Python sign怎么用?Python sign使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了sign函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _apply_sparse

  def _apply_sparse(self, grad, var):
    lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
    alpha_t = math_ops.cast(self._alpha_t, var.dtype.base_dtype)
    beta_t = math_ops.cast(self._beta_t, var.dtype.base_dtype)

    m = self.get_slot(var, 'm')
    m_t = state_ops.assign(
        m, (m * beta_t) + (grad * (1 - beta_t)), use_locking=self._use_locking)

    sign_g = ops.IndexedSlices(
        math_ops.sign(grad.values), grad.indices, dense_shape=grad.dense_shape)
    sign_gm = ops.IndexedSlices(
        array_ops.gather(math_ops.sign(m_t), sign_g.indices) * sign_g.values,
        sign_g.indices,
        dense_shape=sign_g.dense_shape)

    sign_decayed = math_ops.cast(
        self._sign_decay_t, var.dtype.base_dtype)
    multiplier_values = alpha_t + sign_decayed * sign_gm.values
    multiplier = ops.IndexedSlices(
        multiplier_values, sign_gm.indices, dense_shape=sign_gm.dense_shape)

    final_update = ops.IndexedSlices(
        lr_t * multiplier.values * grad.values,
        multiplier.indices,
        dense_shape=multiplier.dense_shape)

    var_update = state_ops.scatter_sub(
        var,
        final_update.indices,
        final_update.values,
        use_locking=self._use_locking)

    return control_flow_ops.group(* [var_update, m_t])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:34,代码来源:addsign.py


示例2: sample_n

  def sample_n(self, n, seed=None, name="sample_n"):
    """Sample `n` observations from the Laplace Distributions.

    Args:
      n: `Scalar`, type int32, the number of observations to sample.
      seed: Python integer, the random seed.
      name: The name to give this op.

    Returns:
      samples: `[n, ...]`, a `Tensor` of `n` samples for each
        of the distributions determined by broadcasting the parameters.
    """
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self._loc, self._scale, n]):
        n = ops.convert_to_tensor(n)
        n_val = tensor_util.constant_value(n)
        shape = array_ops.concat(0, ([n], self.batch_shape()))
        # Sample uniformly-at-random from the open-interval (-1, 1).
        uniform_samples = random_ops.random_uniform(
            shape=shape,
            minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                                self.dtype.as_numpy_dtype(0.)),
            maxval=self.dtype.as_numpy_dtype(1.),
            dtype=self.dtype,
            seed=seed)

        # Provide some hints to shape inference
        inferred_shape = tensor_shape.vector(n_val).concatenate(
            self.get_batch_shape())
        uniform_samples.set_shape(inferred_shape)

        return (self._loc - self._scale * math_ops.sign(uniform_samples) *
                math_ops.log(1. - math_ops.abs(uniform_samples)))
开发者ID:alephman,项目名称:Tensorflow,代码行数:33,代码来源:laplace.py


示例3: random_sign_uniform

def random_sign_uniform(shape,
                        minval=None,
                        maxval=None,
                        dtype=dtypes.float32,
                        seed=None):
  """Tensor with (possibly complex) random entries from a "sign Uniform".

  Letting `Z` be a random variable equal to `-1` and `1` with equal probability,
  Samples from this `Op` are distributed like

  ```
  Z * X, where X ~ Uniform[minval, maxval], if dtype is real,
  Z * (X + iY),  where X, Y ~ Uniform[minval, maxval], if dtype is complex.
  ```

  Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    minval:  `0-D` `Tensor` giving the minimum values.
    maxval:  `0-D` `Tensor` giving the maximum values.
    dtype:  `TensorFlow` `dtype` or Python dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_sign_uniform"):
    unsigned_samples = random_uniform(
        shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed)
    if seed is not None:
      seed += 12
    signs = math_ops.sign(
        random_ops.random_uniform(shape, minval=-1., maxval=1., seed=seed))
    return unsigned_samples * math_ops.cast(signs, unsigned_samples.dtype)
开发者ID:moses-sun,项目名称:tensorflow,代码行数:35,代码来源:linear_operator_test_util.py


示例4: __call__

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    # Check the shape
    if len(shape) < 2:
      raise ValueError("The tensor to initialize must be "
                       "at least two-dimensional")
    # Flatten the input shape with the last dimension remaining
    # its original shape so it works for conv2d
    num_rows = 1
    for dim in shape[:-1]:
      num_rows *= dim
    num_cols = shape[-1]
    flat_shape = (num_cols, num_rows) if num_rows < num_cols else (num_rows,
                                                                   num_cols)

    # Generate a random matrix
    a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    d = array_ops.diag_part(r)
    q *= math_ops.sign(d)
    if num_rows < num_cols:
      q = array_ops.matrix_transpose(q)
    return self.gain * array_ops.reshape(q, shape)
开发者ID:moses-sun,项目名称:tensorflow,代码行数:26,代码来源:init_ops.py


示例5: __call__

  def __call__(self, shape, dtype=dtypes.float32):
    """Returns a tensor object initialized as specified by the initializer.

    Args:
      shape: Shape of the tensor.
      dtype: Optional dtype of the tensor. Only floating point types are
       supported.

    Raises:
      ValueError: If the dtype is not floating point or the input shape is not
       valid.
    """
    dtype = _assert_float_dtype(dtype)
    # Check the shape
    if len(shape) < 2:
      raise ValueError("The tensor to initialize must be "
                       "at least two-dimensional")
    # Flatten the input shape with the last dimension remaining
    # its original shape so it works for conv2d
    num_rows = 1
    for dim in shape[:-1]:
      num_rows *= dim
    num_cols = shape[-1]
    flat_shape = (max(num_cols, num_rows), min(num_cols, num_rows))

    # Generate a random matrix
    a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = gen_linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    d = array_ops.diag_part(r)
    q *= math_ops.sign(d)
    if num_rows < num_cols:
      q = array_ops.matrix_transpose(q)
    return self.gain * array_ops.reshape(q, shape)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:35,代码来源:init_ops_v2.py


示例6: _Solve

def _Solve(a, b, c):
    """Return solution of a quadratic minimization.

  The optimization equation is:
       f(a, b, c) = argmin_w{1/2 * a * w^2 + b * w + c * |w|}
  we get optimal solution w*:
       w* = -(b - sign(b)*c)/a if |b| > c else w* = 0

  REQUIRES: Dimensionality of a and b must be same

  Args:
    a: A Tensor
    b: A Tensor
    c: A Tensor with one element.

  Returns:
    A Tensor w, which is solution for the equation
  """
    with ops.name_scope("solve_" + b.op.name):
        c = ops.convert_to_tensor(c)
        k = array_ops.fill(array_ops.shape(b), c)
        zero_t = array_ops.zeros(array_ops.shape(b), dtype=b.dtype)
        w = (c * math_ops.sign(b) - b) / a
        w = math_ops.select(math_ops.less(math_ops.abs(b), k), zero_t, w)
        return w
开发者ID:sherrym,项目名称:tensorflow,代码行数:25,代码来源:ftrl.py


示例7: Test

 def Test(self):
   np.random.seed(1)
   n = shape_[-1]
   batch_shape = shape_[:-2]
   np_dtype = dtype_.as_numpy_dtype
   a = np.random.uniform(
       low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   if dtype_.is_complex:
     a += 1j * np.random.uniform(
         low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   a += np.conj(a.T)
   a = np.tile(a, batch_shape + (1, 1))
   # Optimal stepsize for central difference is O(epsilon^{1/3}).
   epsilon = np.finfo(np_dtype).eps
   delta = 0.1 * epsilon**(1.0 / 3.0)
   # tolerance obtained by looking at actual differences using
   # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
   if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64):
     tol = 1e-2
   else:
     tol = 1e-7
   with self.session(use_gpu=True):
     tf_a = constant_op.constant(a)
     if compute_v_:
       tf_e, tf_v = linalg_ops.self_adjoint_eig(tf_a)
       # (complex) Eigenvectors are only unique up to an arbitrary phase
       # We normalize the vectors such that the first component has phase 0.
       top_rows = tf_v[..., 0:1, :]
       if tf_a.dtype.is_complex:
         angle = -math_ops.angle(top_rows)
         phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
       else:
         phase = math_ops.sign(top_rows)
       tf_v *= phase
       outputs = [tf_e, tf_v]
     else:
       tf_e = linalg_ops.self_adjoint_eigvals(tf_a)
       outputs = [tf_e]
     for b in outputs:
       x_init = np.random.uniform(
           low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       if dtype_.is_complex:
         x_init += 1j * np.random.uniform(
             low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       x_init += np.conj(x_init.T)
       x_init = np.tile(x_init, batch_shape + (1, 1))
       theoretical, numerical = gradient_checker.compute_gradient(
           tf_a,
           tf_a.get_shape().as_list(),
           b,
           b.get_shape().as_list(),
           x_init_value=x_init,
           delta=delta)
       self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
开发者ID:bunbutter,项目名称:tensorflow,代码行数:54,代码来源:self_adjoint_eig_op_test.py


示例8: Compute

 def Compute(x):
   e, v = linalg_ops.self_adjoint_eig(x)
   # (complex) Eigenvectors are only unique up to an arbitrary phase
   # We normalize the vectors such that the first component has phase 0.
   top_rows = v[..., 0:1, :]
   if dtype_.is_complex:
     angle = -math_ops.angle(top_rows)
     phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
   else:
     phase = math_ops.sign(top_rows)
   v *= phase
   return e, v
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:12,代码来源:self_adjoint_eig_op_test.py


示例9: _sample_n

 def _sample_n(self, n, seed=None):
   shape = array_ops.concat(0, ([n], self.batch_shape()))
   # Sample uniformly-at-random from the open-interval (-1, 1).
   uniform_samples = random_ops.random_uniform(
       shape=shape,
       minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                           self.dtype.as_numpy_dtype(0.)),
       maxval=1.,
       dtype=self.dtype,
       seed=seed)
   return (self.loc - self.scale * math_ops.sign(uniform_samples) *
           math_ops.log(1. - math_ops.abs(uniform_samples)))
开发者ID:KalraA,项目名称:tensorflow,代码行数:12,代码来源:laplace.py


示例10: _orthogonal_matrix

  def _orthogonal_matrix(self, n):
    """Construct an n x n orthogonal matrix.

    Args:
      n: dimension.
    Returns:
      a n x n orthogonal matrix.
    """
    a = random_ops.random_normal([n, n], dtype=self.dtype, seed=self.seed)
    if self.seed:
      self.seed += 1
    q, r = linalg_ops.qr(a)
    d = array_ops.diag_part(r)
    # make q uniform
    q *= math_ops.sign(d)
    return q
开发者ID:moses-sun,项目名称:tensorflow,代码行数:16,代码来源:init_ops.py


示例11: _BesselI1eGrad

def _BesselI1eGrad(op, grad):
  """Compute gradient of bessel_i1e(x) with respect to its argument."""
  x = op.inputs[0]
  y = op.outputs[0]
  with ops.control_dependencies([grad]):
    # For x = 0, the correct gradient is 0.5.
    # However, the main branch gives NaN because of the division by x, so
    # we impute the gradient manually.
    # An alternative solution is to express the gradient via bessel_i0e and
    # bessel_i2e, but the latter is not yet implemented in Eigen.
    eps = np.finfo(x.dtype.as_numpy_dtype).eps
    zeros = array_ops.zeros_like(x)
    x_is_not_tiny = math_ops.abs(x) > eps
    safe_x = array_ops.where(x_is_not_tiny, x, eps + zeros)
    dy_dx = math_ops.bessel_i0e(safe_x) - y * (
        math_ops.sign(safe_x) + math_ops.reciprocal(safe_x))
    return grad * array_ops.where(x_is_not_tiny, dy_dx, 0.5 + zeros)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:17,代码来源:math_grad.py


示例12: _sample_n

 def _sample_n(self, n, seed=None):
   shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
   # Uniform variates must be sampled from the open-interval `(-1, 1)` rather
   # than `[-1, 1)`. In the case of `(0, 1)` we'd use
   # `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest,
   # positive, "normal" number. However, the concept of subnormality exists
   # only at zero; here we need the smallest usable number larger than -1,
   # i.e., `-1 + eps/2`.
   uniform_samples = random_ops.random_uniform(
       shape=shape,
       minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                           self.dtype.as_numpy_dtype(0.)),
       maxval=1.,
       dtype=self.dtype,
       seed=seed)
   return (self.loc - self.scale * math_ops.sign(uniform_samples) *
           math_ops.log1p(-math_ops.abs(uniform_samples)))
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:17,代码来源:laplace.py


示例13: _NormalizingSvd

 def _NormalizingSvd(tf_a):
   tf_s, tf_u, tf_v = linalg_ops.svd(tf_a, compute_uv=True, full_matrices=True)
   # Singular vectors are only unique up to an arbitrary phase. We normalize
   # the vectors such that the first component of u (if m >=n) or v (if n > m)
   # have phase 0.
   m = tf_a.shape[-2]
   n = tf_a.shape[-1]
   if m >= n:
     top_rows = tf_u[..., 0:1, :]
   else:
     top_rows = tf_v[..., 0:1, :]
   if tf_u.dtype.is_complex:
     angle = -math_ops.angle(top_rows)
     phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
   else:
     phase = math_ops.sign(top_rows)
   tf_u *= phase[..., :m]
   tf_v *= phase[..., :n]
   return tf_s, tf_u, tf_v
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:19,代码来源:svd_op_test.py


示例14: cdf

  def cdf(self, x, name="cdf"):
    """CDF of observations in `x` under the Laplace distribution(s).

    Args:
      x: tensor of dtype `dtype`, must be broadcastable with `loc` and `scale`.
      name: The name to give this op.

    Returns:
      cdf: tensor of dtype `dtype`, the CDFs of `x`.
    """
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self._loc, self._scale, x]):
        x = ops.convert_to_tensor(x)
        if x.dtype != self.dtype:
          raise TypeError("Input x dtype does not match dtype: %s vs. %s"
                          % (x.dtype, self.dtype))
        y = x - self._loc
        return 0.5 + 0.5 * math_ops.sign(y) * (
            1. - math_ops.exp(-math_ops.abs(y) / self._scale))
开发者ID:alephman,项目名称:Tensorflow,代码行数:19,代码来源:laplace.py


示例15: build

  def build(self, inputs_shape):
    if inputs_shape[1].value is None:
      raise ValueError("Expected inputs.shape[-1] to be known, saw shape: %s"
                       % inputs_shape)

    input_depth = inputs_shape[1].value
    if self._input_initializer is None:
      self._input_initializer = init_ops.random_normal_initializer(mean=0.0,
                                                                   stddev=0.001)
    self._input_kernel = self.add_variable(
        "input_kernel",
        shape=[input_depth, self._num_units],
        initializer=self._input_initializer)

    if self._recurrent_initializer is None:
      self._recurrent_initializer = init_ops.constant_initializer(1.)
    self._recurrent_kernel = self.add_variable(
        "recurrent_kernel",
        shape=[self._num_units],
        initializer=self._recurrent_initializer)

    # Clip the absolute values of the recurrent weights to the specified minimum
    if self._recurrent_min_abs:
      abs_kernel = math_ops.abs(self._recurrent_kernel)
      min_abs_kernel = math_ops.maximum(abs_kernel, self._recurrent_min_abs)
      self._recurrent_kernel = math_ops.multiply(
          math_ops.sign(self._recurrent_kernel),
          min_abs_kernel
      )

    # Clip the absolute values of the recurrent weights to the specified maximum
    if self._recurrent_max_abs:
      self._recurrent_kernel = clip_ops.clip_by_value(self._recurrent_kernel,
                                                      -self._recurrent_max_abs,
                                                      self._recurrent_max_abs)

    self._bias = self.add_variable(
        "bias",
        shape=[self._num_units],
        initializer=init_ops.zeros_initializer(dtype=self.dtype))

    self.built = True
开发者ID:xkp793003821,项目名称:indrnn,代码行数:42,代码来源:ind_rnn_cell.py


示例16: _cdf

 def _cdf(self, x):
   z = self._z(x)
   return (0.5 + 0.5 * math_ops.sign(z) *
           (1. - math_ops.exp(-math_ops.abs(z))))
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:4,代码来源:laplace.py


示例17: indicator

 def indicator(x):
   x1_times_x2 = math_ops.reduce_prod(x, reduction_indices=[-1])
   return 0.5 * (math_ops.sign(x1_times_x2) + 1.0)
开发者ID:arnonhongklay,项目名称:tensorflow,代码行数:3,代码来源:monte_carlo_test.py


示例18: reduce_weighted_logsumexp

def reduce_weighted_logsumexp(
    logx,
    w=None,
    axis=None,
    keep_dims=False,
    return_sign=False,
    name=None):
  """Computes `log(abs(sum(weight * exp(elements across tensor dimensions))))`.

  If all weights `w` are known to be positive, it is more efficient to directly
  use `reduce_logsumexp`, i.e., `tf.reduce_logsumexp(logx + tf.log(w))` is more
  efficient than `du.reduce_weighted_logsumexp(logx, w)`.

  Reduces `input_tensor` along the dimensions given in `axis`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `axis`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `axis` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  This function is more numerically stable than log(sum(w * exp(input))). It
  avoids overflows caused by taking the exp of large inputs and underflows
  caused by taking the log of small inputs.

  For example:

  ```python
  x = tf.constant([[0., 0, 0],
                   [0, 0, 0]])

  w = tf.constant([[-1., 1, 1],
                   [1, 1, 1]])

  du.reduce_weighted_logsumexp(x, w)
  # ==> log(-1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) = log(4)

  du.reduce_weighted_logsumexp(x, w, axis=0)
  # ==> [log(-1+1), log(1+1), log(1+1)]

  du.reduce_weighted_logsumexp(x, w, axis=1)
  # ==> [log(-1+1+1), log(1+1+1)]

  du.reduce_weighted_logsumexp(x, w, axis=1, keep_dims=True)
  # ==> [[log(-1+1+1)], [log(1+1+1)]]

  du.reduce_weighted_logsumexp(x, w, axis=[0, 1])
  # ==> log(-1+5)
  ```

  Args:
    logx: The tensor to reduce. Should have numeric type.
    w: The weight tensor. Should have numeric type identical to `logx`.
    axis: The dimensions to reduce. If `None` (the default),
      reduces all dimensions. Must be in the range
      `[-rank(input_tensor), rank(input_tensor))`.
    keep_dims: If true, retains reduced dimensions with length 1.
    return_sign: If `True`, returns the sign of the result.
    name: A name for the operation (optional).

  Returns:
    lswe: The `log(abs(sum(weight * exp(x))))` reduced tensor.
    sign: (Optional) The sign of `sum(weight * exp(x))`.
  """
  with ops.name_scope(name, "reduce_weighted_logsumexp", [logx, w]):
    logx = ops.convert_to_tensor(logx, name="logx")
    if w is None:
      lswe = math_ops.reduce_logsumexp(logx, axis=axis, keep_dims=keep_dims)
      if return_sign:
        sgn = array_ops.ones_like(lswe)
        return lswe, sgn
      return lswe
    w = ops.convert_to_tensor(w, dtype=logx.dtype, name="w")
    log_absw_x = logx + math_ops.log(math_ops.abs(w))
    max_log_absw_x = math_ops.reduce_max(log_absw_x, axis=axis, keep_dims=True)
    # If the largest element is `-inf` or `inf` then we don't bother subtracting
    # off the max. We do this because otherwise we'd get `inf - inf = NaN`. That
    # this is ok follows from the fact that we're actually free to subtract any
    # value we like, so long as we add it back after taking the `log(sum(...))`.
    max_log_absw_x = array_ops.where(
        math_ops.is_inf(max_log_absw_x),
        array_ops.zeros_like(max_log_absw_x),
        max_log_absw_x)
    wx_over_max_absw_x = (
        math_ops.sign(w) * math_ops.exp(log_absw_x - max_log_absw_x))
    sum_wx_over_max_absw_x = math_ops.reduce_sum(
        wx_over_max_absw_x,
        axis=axis,
        keep_dims=keep_dims)
    if not keep_dims:
      max_log_absw_x = array_ops.squeeze(max_log_absw_x, axis)
    sgn = math_ops.sign(sum_wx_over_max_absw_x)
    lswe = max_log_absw_x + math_ops.log(sgn * sum_wx_over_max_absw_x)
    if return_sign:
      return lswe, sgn
    return lswe
开发者ID:Kongsea,项目名称:tensorflow,代码行数:96,代码来源:util.py


示例19: _ComplexAbsGrad

def _ComplexAbsGrad(op, grad):
  """Returns the gradient of ComplexAbs."""
  # TODO(b/27786104): The cast to complex could be removed once arithmetic
  # supports mixtures of complex64 and real values.
  return (math_ops.complex(grad, array_ops.zeros_like(grad)) * math_ops.sign(
      op.inputs[0]))
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:6,代码来源:math_grad.py


示例20: _BesselI0eGrad

def _BesselI0eGrad(op, grad):
  """Compute gradient of bessel_i0e(x) with respect to its argument."""
  x = op.inputs[0]
  y = op.outputs[0]
  with ops.control_dependencies([grad]):
    return grad * (math_ops.bessel_i1e(x) - math_ops.sign(x) * y)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:6,代码来源:math_grad.py



注:本文中的tensorflow.python.ops.math_ops.sign函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python math_ops.sin函数代码示例发布时间:2022-05-27
下一篇:
Python math_ops.sigmoid函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap