• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python math_ops.reduce_all函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.math_ops.reduce_all函数的典型用法代码示例。如果您正苦于以下问题:Python reduce_all函数的具体用法?Python reduce_all怎么用?Python reduce_all使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了reduce_all函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _loss_fn

 def _loss_fn(labels, logits):
   check_labels = control_flow_ops.Assert(
       math_ops.reduce_all(math_ops.equal(labels, labels_input)),
       data=[labels])
   check_logits = control_flow_ops.Assert(
       math_ops.reduce_all(math_ops.equal(logits, logits_input)),
       data=[logits])
   with ops.control_dependencies([check_labels, check_logits]):
     return constant_op.constant(loss)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:9,代码来源:head_test.py


示例2: _compute_energy_change

def _compute_energy_change(current_target_log_prob,
                           current_momentums,
                           proposed_target_log_prob,
                           proposed_momentums,
                           independent_chain_ndims,
                           name=None):
  """Helper to `kernel` which computes the energy change."""
  with ops.name_scope(
      name, "compute_energy_change",
      ([current_target_log_prob, proposed_target_log_prob,
        independent_chain_ndims] +
       current_momentums + proposed_momentums)):
    # Abbreviate lk0=log_kinetic_energy and lk1=proposed_log_kinetic_energy
    # since they're a mouthful and lets us inline more.
    lk0, lk1 = [], []
    for current_momentum, proposed_momentum in zip(current_momentums,
                                                   proposed_momentums):
      axis = math_ops.range(independent_chain_ndims,
                            array_ops.rank(current_momentum))
      lk0.append(_log_sum_sq(current_momentum, axis))
      lk1.append(_log_sum_sq(proposed_momentum, axis))

    lk0 = -np.log(2.) + math_ops.reduce_logsumexp(array_ops.stack(lk0, axis=-1),
                                                  axis=-1)
    lk1 = -np.log(2.) + math_ops.reduce_logsumexp(array_ops.stack(lk1, axis=-1),
                                                  axis=-1)
    lp0 = -current_target_log_prob   # log_potential
    lp1 = -proposed_target_log_prob  # proposed_log_potential
    x = array_ops.stack([lp1, math_ops.exp(lk1), -lp0, -math_ops.exp(lk0)],
                        axis=-1)

    # The sum is NaN if any element is NaN or we see both +Inf and -Inf.
    # Thus we will replace such rows with infinite energy change which implies
    # rejection. Recall that float-comparisons with NaN are always False.
    is_sum_determinate = (
        math_ops.reduce_all(math_ops.is_finite(x) | (x >= 0.), axis=-1) &
        math_ops.reduce_all(math_ops.is_finite(x) | (x <= 0.), axis=-1))
    is_sum_determinate = array_ops.tile(
        is_sum_determinate[..., array_ops.newaxis],
        multiples=array_ops.concat([
            array_ops.ones(array_ops.rank(is_sum_determinate),
                           dtype=dtypes.int32),
            [4],
        ], axis=0))
    x = array_ops.where(is_sum_determinate,
                        x,
                        array_ops.fill(array_ops.shape(x),
                                       value=x.dtype.as_numpy_dtype(np.inf)))

    return math_ops.reduce_sum(x, axis=-1)
开发者ID:Yashar78,项目名称:tensorflow,代码行数:50,代码来源:hmc_impl.py


示例3: testUniformSamplePdf

 def testUniformSamplePdf(self):
   a = 10.0
   b = [11.0, 100.0]
   uniform = uniform_lib.Uniform(a, b)
   self.assertTrue(
       self.evaluate(
           math_ops.reduce_all(uniform.prob(uniform.sample(10)) > 0)))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:7,代码来源:uniform_test.py


示例4: next_inputs

  def next_inputs(self, time, outputs, state, sample_ids, name=None):
    with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
                        [time, outputs, state, sample_ids]):
      (finished, base_next_inputs, state) = (
          super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
              time=time,
              outputs=outputs,
              state=state,
              sample_ids=sample_ids,
              name=name))

      def maybe_sample():
        """Perform scheduled sampling."""
        where_sampling = math_ops.cast(
            array_ops.where(sample_ids > -1), dtypes.int32)
        where_not_sampling = math_ops.cast(
            array_ops.where(sample_ids <= -1), dtypes.int32)
        where_sampling_flat = array_ops.reshape(where_sampling, [-1])
        where_not_sampling_flat = array_ops.reshape(where_not_sampling, [-1])
        sample_ids_sampling = array_ops.gather(sample_ids, where_sampling_flat)
        inputs_not_sampling = array_ops.gather(
            base_next_inputs, where_not_sampling_flat)
        sampled_next_inputs = self._embedding_fn(sample_ids_sampling)
        base_shape = array_ops.shape(base_next_inputs)
        return (array_ops.scatter_nd(indices=where_sampling,
                                     updates=sampled_next_inputs,
                                     shape=base_shape)
                + array_ops.scatter_nd(indices=where_not_sampling,
                                       updates=inputs_not_sampling,
                                       shape=base_shape))

      all_finished = math_ops.reduce_all(finished)
      next_inputs = control_flow_ops.cond(
          all_finished, lambda: base_next_inputs, maybe_sample)
      return (finished, next_inputs, state)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:35,代码来源:helper.py


示例5: same_dynamic_shape

def same_dynamic_shape(a, b):
  """Returns whether a and b have the same dynamic shape.

  Args:
    a: `Tensor`
    b: `Tensor`

  Returns:
    `Boolean` `Tensor` representing if both tensors have the same shape.
  """
  a = ops.convert_to_tensor(a, name="a")
  b = ops.convert_to_tensor(b, name="b")

  # One of the shapes isn't fully defined, so we need to use the dynamic
  # shape.
  return control_flow_ops.cond(
      math_ops.equal(array_ops.rank(a), array_ops.rank(b)),
      # Here we can't just do math_ops.equal(a.shape, b.shape), since
      # static shape inference may break the equality comparison between
      # shape(a) and shape(b) in math_ops.equal.
      lambda: math_ops.reduce_all(math_ops.equal(
          array_ops.concat_v2((
              array_ops.shape(a),
              array_ops.shape(b)), 0),
          array_ops.concat_v2((
              array_ops.shape(b),
              array_ops.shape(a)), 0))),
      lambda: constant_op.constant(False))
开发者ID:kadeng,项目名称:tensorflow,代码行数:28,代码来源:distribution_util.py


示例6: _call_loss_fn

def _call_loss_fn(loss_fn, labels, logits, features):
  """Calls loss_fn and checks the returned shape.

  Args:
    loss_fn: The loss function.
    labels: Processed labels Tensor.
    logits: Logits Tensor of shape [batch_size, logits_dimension].
    features: Features dict.
  Returns:
    Loss Tensor with shape [batch_size, 1].
  """
  loss_fn_args = util.fn_args(loss_fn)
  kwargs = {}
  if 'features' in loss_fn_args:
    kwargs['features'] = features
  unweighted_loss = loss_fn(labels=labels, logits=logits, **kwargs)
  batch_size = array_ops.shape(logits)[0]
  loss_shape = array_ops.shape(unweighted_loss)
  check_shape_op = control_flow_ops.Assert(
      math_ops.reduce_all(math_ops.equal(loss_shape, [batch_size, 1])),
      data=[
          'loss_fn must return Tensor of shape [batch_size, 1]. Given: ',
          loss_shape])
  with ops.control_dependencies([check_shape_op]):
    return array_ops.identity(unweighted_loss)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:25,代码来源:head.py


示例7: _assert_has_shape

 def _assert_has_shape(x, shape):
     x_shape = array_ops.shape(x)
     packed_shape = array_ops.pack(shape)
     return logging_ops.Assert(
         math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)),
         ["Expected shape for Tensor %s is " % x.name, packed_shape, " but saw shape: ", x_shape],
     )
开发者ID:chemelnucfin,项目名称:tensorflow,代码行数:7,代码来源:rnn.py


示例8: assert_close

def assert_close(
    x, y, data=None, summarize=None, message=None, name="assert_close"):
  """Assert that that x and y are within machine epsilon of each other.

  Args:
    x: Numeric `Tensor`
    y: Numeric `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
  """
  message = message or ""
  x = ops.convert_to_tensor(x, name="x")
  y = ops.convert_to_tensor(y, name="y")

  if x.dtype.is_integer:
    return check_ops.assert_equal(
        x, y, data=data, summarize=summarize, message=message, name=name)

  with ops.name_scope(name, "assert_close", [x, y, data]):
    tol = np.finfo(x.dtype.as_numpy_dtype).resolution
    if data is None:
      data = [
          message,
          "Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
          y.name, y
      ]
    condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
    return control_flow_ops.Assert(
        condition, data, summarize=summarize)
开发者ID:Nishant23,项目名称:tensorflow,代码行数:35,代码来源:distribution_util.py


示例9: is_strictly_increasing

def is_strictly_increasing(x, name=None):
    """Returns `True` if `x` is strictly increasing.

  Elements of `x` are compared in row-major order.  The tensor `[x[0],...]`
  is strictly increasing if for every adjacent pair we have `x[i] < x[i+1]`.
  If `x` has less than two elements, it is trivially strictly increasing.

  See also:  `is_non_decreasing`

  Args:
    x: Numeric `Tensor`.
    name: A name for this operation (optional).
      Defaults to "is_strictly_increasing"

  Returns:
    Boolean `Tensor`, equal to `True` iff `x` is strictly increasing.

  Raises:
    TypeError: if `x` is not a numeric tensor.
  """
    with ops.op_scope([x], name, "is_strictly_increasing"):
        diff = _get_diff_for_monotonic_comparison(x)
        # When len(x) = 1, diff = [], less = [], and reduce_all([]) = True.
        zero = ops.convert_to_tensor(0, dtype=diff.dtype)
        return math_ops.reduce_all(math_ops.less(zero, diff))
开发者ID:RChandrasekar,项目名称:tensorflow,代码行数:25,代码来源:check_ops.py


示例10: testUniformSamplePdf

 def testUniformSamplePdf(self):
   with self.test_session():
     a = 10.0
     b = [11.0, 100.0]
     uniform = uniform_lib.Uniform(a, b)
     self.assertTrue(
         math_ops.reduce_all(uniform.pdf(uniform.sample(10)) > 0).eval())
开发者ID:ivankreso,项目名称:tensorflow,代码行数:7,代码来源:uniform_test.py


示例11: testNonSequenceNestedStructure

  def testNonSequenceNestedStructure(self):
    components = np.array([1, 2, 3], dtype=np.int64)

    dataset = dataset_ops.Dataset.from_tensors(components)
    self.assertEquals(dtypes.int64, dataset.output_types)
    self.assertEquals([3], dataset.output_shapes)

    dataset = dataset.filter(
        lambda x: math_ops.reduce_all(math_ops.equal(x, components)))
    self.assertEquals(dtypes.int64, dataset.output_types)
    self.assertEquals([3], dataset.output_shapes)

    dataset = dataset.map(lambda x: array_ops.stack([x, x]))
    self.assertEquals(dtypes.int64, dataset.output_types)
    self.assertEquals([2, 3], dataset.output_shapes)

    dataset = dataset.flat_map(
        lambda x: dataset_ops.Dataset.from_tensor_slices(x))
    self.assertEquals(dtypes.int64, dataset.output_types)
    self.assertEquals([3], dataset.output_shapes)

    iterator = dataset.make_one_shot_iterator()
    get_next = iterator.get_next()
    self.assertEquals(dtypes.int64, get_next.dtype)
    self.assertEquals([3], get_next.shape)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:25,代码来源:dataset_constructor_op_test.py


示例12: testNonSequenceNestedStructure

  def testNonSequenceNestedStructure(self):
    components = np.array([1, 2, 3], dtype=np.int64)

    dataset = dataset_ops.Dataset.from_tensors(components)
    self.assertEqual(dtypes.int64,
                     dataset_ops.get_legacy_output_types(dataset))
    self.assertEqual([3], dataset_ops.get_legacy_output_shapes(dataset))

    dataset = dataset.filter(
        lambda x: math_ops.reduce_all(math_ops.equal(x, components)))
    self.assertEqual(dtypes.int64,
                     dataset_ops.get_legacy_output_types(dataset))
    self.assertEqual([3], dataset_ops.get_legacy_output_shapes(dataset))

    dataset = dataset.map(lambda x: array_ops.stack([x, x]))
    self.assertEqual(dtypes.int64,
                     dataset_ops.get_legacy_output_types(dataset))
    self.assertEqual([2, 3], dataset_ops.get_legacy_output_shapes(dataset))

    dataset = dataset.flat_map(
        lambda x: dataset_ops.Dataset.from_tensor_slices(x))
    self.assertEqual(dtypes.int64,
                     dataset_ops.get_legacy_output_types(dataset))
    self.assertEqual([3], dataset_ops.get_legacy_output_shapes(dataset))

    get_next = self.getNext(dataset)
    self.assertEqual(dtypes.int64, get_next().dtype)
    self.assertEqual([3], get_next().shape)
开发者ID:aritratony,项目名称:tensorflow,代码行数:28,代码来源:from_tensors_test.py


示例13: random_crop

def random_crop(value, size, seed=None, name=None):
  """Randomly crops a tensor to a given size.

  Slices a shape `size` portion out of `value` at a uniformly chosen offset.
  Requires `value.shape >= size`.

  If a dimension should not be cropped, pass the full size of that dimension.
  For example, RGB images can be cropped with
  `size = [crop_height, crop_width, 3]`.

  Args:
    value: Input tensor to crop.
    size: 1-D tensor with size the rank of `value`.
    seed: Python integer. Used to create a random seed. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.
    name: A name for this operation (optional).

  Returns:
    A cropped tensor of the same rank as `value` and shape `size`.
  """
  # TODO(shlens): Implement edge case to guarantee output size dimensions.
  # If size > value.shape, zero pad the result so that it always has shape
  # exactly size.
  with ops.op_scope([value, size], name, "random_crop") as name:
    value = ops.convert_to_tensor(value, name="value")
    size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size")
    shape = array_ops.shape(value)
    check = logging_ops.Assert(math_ops.reduce_all(shape >= size),
                               ["Need value.shape >= size, got ", shape, size])
    shape = control_flow_ops.with_dependencies([check], shape)
    limit = shape - size + 1
    offset = random_uniform(array_ops.shape(shape), dtype=size.dtype,
                            maxval=size.dtype.max, seed=seed) % limit
    return array_ops.slice(value, offset, size, name=name)
开发者ID:0ruben,项目名称:tensorflow,代码行数:35,代码来源:random_ops.py


示例14: _assert_batch_positive_definite

def _assert_batch_positive_definite(sigma_chol):
    """Add assertions checking that the sigmas are all Positive Definite.

  Given `sigma_chol == cholesky(sigma)`, it is sufficient to check that
  `all(diag(sigma_chol) > 0)`.  This is because to check that a matrix is PD,
  it is sufficient that its cholesky factorization is PD, and to check that a
  triangular matrix is PD, it is sufficient to check that its diagonal
  entries are positive.

  Args:
    sigma_chol: N-D.  The lower triangular cholesky decomposition of `sigma`.

  Returns:
    An assertion op to use with `control_dependencies`, verifying that
    `sigma_chol` is positive definite.
  """
    sigma_batch_diag = array_ops.batch_matrix_diag_part(sigma_chol)
    return logging_ops.Assert(
        math_ops.reduce_all(sigma_batch_diag > 0),
        [
            "sigma_chol is not positive definite.  batched diagonals: ",
            sigma_batch_diag,
            " shaped: ",
            array_ops.shape(sigma_batch_diag),
        ],
    )
开发者ID:chongyang915,项目名称:tensorflow,代码行数:26,代码来源:mvn.py


示例15: assert_less_equal

def assert_less_equal(x, y, data=None, summarize=None, name=None):
  """Assert the condition `x <= y` holds element-wise.

  This condition holds if for every pair of (possibly broadcast) elements
  `x[i]`, `y[i]`, we have `x[i] <= y[i]`.
  If both `x` and `y` are empty, this is trivially satisfied.

  Args:
    x:  Numeric `Tensor`.
    y:  Numeric `Tensor`, same dtype as and broadcastable to `x`.
    data:  The tensors to print out if the condition is False.  Defaults to
      error message and first few entries of `x`, `y`.
    summarize: Print this many entries of each tensor.
    name: A name for this operation (optional).  Defaults to "assert_less_equal"

  Returns:
    Op that raises `InvalidArgumentError` if `x <= y` is False.
  """
  with ops.op_scope([x, y, data], name, 'assert_less_equal'):
    x = ops.convert_to_tensor(x, name='x')
    y = ops.convert_to_tensor(y, name='y')
    if data is None:
      data = [
          'Condition x <= y did not hold element-wise: x = ', x.name, x, 'y = ',
          y.name, y
      ]
    condition = math_ops.reduce_all(math_ops.less_equal(x, y))
    return logging_ops.Assert(condition, data, summarize=summarize)
开发者ID:2er0,项目名称:tensorflow,代码行数:28,代码来源:check_ops.py


示例16: testAxesType

 def testAxesType(self):
   for dtype in [dtypes.int64, dtypes.int32]:
     with self.test_session(use_gpu=True) as sess:
       v = math_ops.reduce_all([True, True],
                               constant_op.constant(0, dtype=dtype))
       tf_v = sess.run(v)
     self.assertAllEqual(tf_v, True)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:7,代码来源:reduction_ops_test.py


示例17: initialize

 def initialize(self, name=None):
   with ops.name_scope(name, "TrainingHelperInitialize"):
     finished = math_ops.equal(0, self._sequence_length)
     all_finished = math_ops.reduce_all(finished)
     next_inputs = control_flow_ops.cond(
         all_finished, lambda: self._zero_inputs,
         lambda: nest.map_structure(lambda inp: inp.read(0), self._input_tas))
     return (finished, next_inputs)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:8,代码来源:helper.py


示例18: next_inputs

  def next_inputs(self, time, outputs, state, sample_ids, name=None):
    with ops.name_scope(name, "ScheduledOutputTrainingHelperNextInputs",
                        [time, outputs, state, sample_ids]):
      (finished, base_next_inputs, state) = (
          super(ScheduledOutputTrainingHelper, self).next_inputs(
              time=time,
              outputs=outputs,
              state=state,
              sample_ids=sample_ids,
              name=name))
      sample_ids = math_ops.cast(sample_ids, dtypes.bool)

      def maybe_sample():
        """Perform scheduled sampling."""

        def maybe_concatenate_auxiliary_inputs(outputs_, indices=None):
          """Concatenate outputs with auxiliary inputs, if they exist."""
          if self._auxiliary_input_tas is None:
            return outputs_

          next_time = time + 1
          auxiliary_inputs = nest.map_structure(
              lambda ta: ta.read(next_time), self._auxiliary_input_tas)
          if indices is not None:
            auxiliary_inputs = array_ops.gather_nd(auxiliary_inputs, indices)
          return nest.map_structure(
              lambda x, y: array_ops.concat((x, y), -1),
              outputs_, auxiliary_inputs)

        if self._next_inputs_fn is None:
          return array_ops.where(
              sample_ids, maybe_concatenate_auxiliary_inputs(outputs),
              base_next_inputs)

        where_sampling = math_ops.cast(
            array_ops.where(sample_ids), dtypes.int32)
        where_not_sampling = math_ops.cast(
            array_ops.where(math_ops.logical_not(sample_ids)), dtypes.int32)
        outputs_sampling = array_ops.gather_nd(outputs, where_sampling)
        inputs_not_sampling = array_ops.gather_nd(base_next_inputs,
                                                  where_not_sampling)
        sampled_next_inputs = maybe_concatenate_auxiliary_inputs(
            self._next_inputs_fn(outputs_sampling), where_sampling)

        base_shape = array_ops.shape(base_next_inputs)
        return (array_ops.scatter_nd(indices=where_sampling,
                                     updates=sampled_next_inputs,
                                     shape=base_shape)
                + array_ops.scatter_nd(indices=where_not_sampling,
                                       updates=inputs_not_sampling,
                                       shape=base_shape))

      all_finished = math_ops.reduce_all(finished)
      no_samples = math_ops.logical_not(math_ops.reduce_any(sample_ids))
      next_inputs = control_flow_ops.cond(
          math_ops.logical_or(all_finished, no_samples),
          lambda: base_next_inputs, maybe_sample)
      return (finished, next_inputs, state)
开发者ID:AnddyWang,项目名称:tensorflow,代码行数:58,代码来源:helper.py


示例19: next_inputs

 def next_inputs(self, sample_ids,name=None):
   finished = math_ops.equal(sample_ids, self.config.eos_token)
   all_finished = math_ops.reduce_all(finished)
   next_inputs = control_flow_ops.cond(
       all_finished,
       # If we're finished, the next_inputs value doesn't matter
       lambda:  tf.nn.embedding_lookup(self.target_embedding, tf.tile([self.config.eos_token], [self.config.beam_width])),
       lambda: tf.nn.embedding_lookup(self.target_embedding, sample_ids))
   return all_finished, next_inputs
开发者ID:clren,项目名称:conv_seq2seq,代码行数:9,代码来源:conv_decoder_fairseq.py


示例20: apply_gradients

  def apply_gradients(self, grads_and_vars, global_step=None, name=None):
    """Apply gradients. See base class @{tf.train.Optimizer}."""
    grads = [g for (g, _) in grads_and_vars]

    is_finite_grad = []
    for g in grads:
      is_finite_grad.append(math_ops.reduce_all(gen_math_ops.is_finite(g)))
    is_overall_finite = math_ops.reduce_all(is_finite_grad)

    # Only update gradients when all grads are finite.
    def true_apply_gradients_fn():
      return self._opt.apply_gradients(grads_and_vars, global_step, name)

    update_vars = control_flow_ops.cond(
        is_overall_finite, true_apply_gradients_fn, gen_control_flow_ops.no_op)
    # Potentially adjust gradient scale in case of finite gradients.
    return control_flow_ops.group(
        update_vars,
        self._loss_scale_manager.update_loss_scale(is_overall_finite))
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:19,代码来源:loss_scale_optimizer.py



注:本文中的tensorflow.python.ops.math_ops.reduce_all函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python math_ops.reduce_any函数代码示例发布时间:2022-05-27
下一篇:
Python math_ops.reciprocal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap