本文整理汇总了Python中tensorflow.python.ops.math_ops.multiply函数的典型用法代码示例。如果您正苦于以下问题:Python multiply函数的具体用法?Python multiply怎么用?Python multiply使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了multiply函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __call__
def __call__(self, step):
with ops.name_scope(
self.name, "PolynomialDecay",
[self.initial_learning_rate, step, self.decay_steps,
self.end_learning_rate, self.power]
) as name:
initial_learning_rate = ops.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate")
dtype = initial_learning_rate.dtype
end_learning_rate = math_ops.cast(self.end_learning_rate, dtype)
power = math_ops.cast(self.power, dtype)
global_step_recomp = math_ops.cast(step, dtype)
decay_steps_recomp = math_ops.cast(self.decay_steps, dtype)
if self.cycle:
# Find the first multiple of decay_steps that is bigger than
# global_step. If global_step is zero set the multiplier to 1
multiplier = control_flow_ops.cond(
math_ops.equal(global_step_recomp, 0), lambda: 1.0,
lambda: math_ops.ceil(global_step_recomp / self.decay_steps))
decay_steps_recomp = math_ops.multiply(decay_steps_recomp, multiplier)
else:
# Make sure that the global_step used is not bigger than decay_steps.
global_step_recomp = math_ops.minimum(global_step_recomp,
self.decay_steps)
p = math_ops.div(global_step_recomp, decay_steps_recomp)
return math_ops.add(
math_ops.multiply(initial_learning_rate - end_learning_rate,
math_ops.pow(1 - p, power)),
end_learning_rate,
name=name)
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:32,代码来源:learning_rate_schedule.py
示例2: huber_loss
def huber_loss(y_true, y_pred, delta=1.0):
"""Computes Huber loss value.
For each value x in `error=y_true-y_pred`, the following is calculated:
```
0.5 * x^2 if |x| <= d
0.5 * d^2 + d * (|x| - d) if |x| > d
```
where d is `delta`. See: https://en.wikipedia.org/wiki/Huber_loss
Args:
y_true: tensor of true targets.
y_pred: tensor of predicted targets.
delta: A float, the point where the Huber loss function changes from a
quadratic to linear.
Returns:
Tensor with one scalar loss entry per sample.
"""
y_pred = math_ops.cast(y_pred, dtype=K.floatx())
y_true = math_ops.cast(y_true, dtype=K.floatx())
error = math_ops.subtract(y_pred, y_true)
abs_error = math_ops.abs(error)
quadratic = math_ops.minimum(abs_error, delta)
linear = math_ops.subtract(abs_error, quadratic)
return math_ops.add(
math_ops.multiply(
ops.convert_to_tensor(0.5, dtype=quadratic.dtype),
math_ops.multiply(quadratic, quadratic)),
math_ops.multiply(delta, linear))
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:31,代码来源:losses.py
示例3: logloss
def logloss(y_true, y_pred):
y_pred = ops.convert_to_tensor(y_pred)
y_true = math_ops.cast(y_true, y_pred.dtype)
losses = math_ops.multiply(y_true, math_ops.log(y_pred + K.epsilon()))
losses += math_ops.multiply((1 - y_true),
math_ops.log(1 - y_pred + K.epsilon()))
return K.mean(-losses, axis=-1)
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:7,代码来源:losses.py
示例4: setUp
def setUp(self):
"""Test setup.
Structure of the forward graph:
f
| |
----- -----
| |
d e
| | | |
--- --------- ---
| | |
a b c
Construct a backward graph using the GradientDescentOptimizer.
"""
self.a = variables.Variable(1.0, name="a")
self.b = variables.Variable(2.0, name="b")
self.c = variables.Variable(4.0, name="c")
self.d = math_ops.multiply(self.a, self.b, name="d")
self.e = math_ops.multiply(self.b, self.c, name="e")
self.f = math_ops.multiply(self.d, self.e, name="f")
# Gradient descent optimizer that minimizes g.
gradient_descent.GradientDescentOptimizer(0.01).minimize(
self.f, name="optim")
self.sess = session.Session()
self.sess.run(variables.global_variables_initializer())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:30,代码来源:stepper_test.py
示例5: normalize_moments
def normalize_moments(counts, mean_ss, variance_ss, shift, name=None):
"""Calculate the mean and variance of based on the sufficient statistics.
Args:
counts: A `Tensor` containing a the total count of the data (one value).
mean_ss: A `Tensor` containing the mean sufficient statistics: the (possibly
shifted) sum of the elements to average over.
variance_ss: A `Tensor` containing the variance sufficient statistics: the
(possibly shifted) squared sum of the data to compute the variance over.
shift: A `Tensor` containing the value by which the data is shifted for
numerical stability, or `None` if no shift was performed.
name: Name used to scope the operations that compute the moments.
Returns:
Two `Tensor` objects: `mean` and `variance`.
"""
with ops.name_scope(name, "normalize", [counts, mean_ss, variance_ss, shift]):
divisor = math_ops.reciprocal(counts, name="divisor")
if shift is not None:
shifted_mean = math_ops.multiply(mean_ss, divisor, name="shifted_mean")
mean = math_ops.add(shifted_mean, shift, name="mean")
else: # no shift.
shifted_mean = math_ops.multiply(mean_ss, divisor, name="mean")
mean = shifted_mean
variance = math_ops.subtract(math_ops.multiply(variance_ss, divisor),
math_ops.square(shifted_mean),
name="variance")
return (mean, variance)
开发者ID:pcm17,项目名称:tensorflow,代码行数:28,代码来源:nn_impl.py
示例6: setUp
def setUp(self):
"""Test setup.
Structure of the forward graph:
f
| |
----- -----
| |
d e
| | | |
--- --------- ---
| | |
a b c
Construct a backward graph using the GradientDescentOptimizer.
"""
self.a = variables.Variable(1.0, name="a")
self.b = variables.Variable(2.0, name="b")
self.c = variables.Variable(4.0, name="c")
self.d = math_ops.multiply(self.a, self.b, name="d")
self.e = math_ops.multiply(self.b, self.c, name="e")
self.f = math_ops.multiply(self.d, self.e, name="f")
# Gradient descent optimizer that minimizes g.
gradient_descent.GradientDescentOptimizer(0.01).minimize(
self.f, name="optim")
rewriter_config = rewriter_config_pb2.RewriterConfig(
disable_model_pruning=True)
graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
config = config_pb2.ConfigProto(graph_options=graph_options)
self.sess = session.Session(config=config)
self.sess.run(variables.global_variables_initializer())
开发者ID:1000sprites,项目名称:tensorflow,代码行数:34,代码来源:stepper_test.py
示例7: Foo
def Foo():
x = constant_op.constant(10.0, name="x")
y = math_ops.multiply(x, c, name="y")
# Regression test for b/122564611.
z = math_ops.multiply(c, y, name="z")
g = gradients_impl.gradients(z, x)
return g[0]
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:gradients_test.py
示例8: setUp
def setUp(self):
self.a = variables.VariableV1(2.0, name="a")
self.b = variables.VariableV1(3.0, name="b")
self.c = math_ops.multiply(self.a, self.b, name="c") # Should be 6.0.
self.d = math_ops.multiply(self.a, self.a, name="d") # Should be 4.0.
self.e = math_ops.multiply(self.d, self.c, name="e") # Should be 24.0.
self.f_y = constant_op.constant(0.30, name="f_y")
self.f = math_ops.div(self.b, self.f_y, name="f") # Should be 10.0.
# The there nodes x, y and z form a graph with "cross-links" in. I.e., x
# and y are both direct inputs to z, but x is also a direct input to y.
self.x = variables.VariableV1(2.0, name="x") # Should be 2.0
self.y = math_ops.negative(self.x, name="y") # Should be -2.0.
self.z = math_ops.multiply(self.x, self.y, name="z") # Should be -4.0.
rewriter_config = rewriter_config_pb2.RewriterConfig(
disable_model_pruning=True,
arithmetic_optimization=rewriter_config_pb2.RewriterConfig.OFF,
constant_folding=rewriter_config_pb2.RewriterConfig.OFF)
graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
config = config_pb2.ConfigProto(graph_options=graph_options)
self.sess = session.Session(config=config)
self.sess.run(variables.global_variables_initializer())
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:27,代码来源:stepper_test.py
示例9: accuracy
def accuracy(predictions, labels, weights=None):
"""Computes the percentage of times that predictions matches labels.
Args:
predictions: the predicted values, a `Tensor` whose dtype and shape
matches 'labels'.
labels: the ground truth values, a `Tensor` of any shape and
bool, integer, or string dtype.
weights: None or `Tensor` of float values to reweight the accuracy.
Returns:
Accuracy `Tensor`.
Raises:
ValueError: if dtypes don't match or
if dtype is not bool, integer, or string.
"""
if not (labels.dtype.is_integer or
labels.dtype in (dtypes.bool, dtypes.string)):
raise ValueError(
'Labels should have bool, integer, or string dtype, not %r' %
labels.dtype)
if not labels.dtype.is_compatible_with(predictions.dtype):
raise ValueError('Dtypes of predictions and labels should match. '
'Given: predictions (%r) and labels (%r)' %
(predictions.dtype, labels.dtype))
with ops.name_scope('accuracy', values=[predictions, labels]):
is_correct = math_ops.cast(
math_ops.equal(predictions, labels), dtypes.float32)
if weights is not None:
is_correct = math_ops.multiply(is_correct, weights)
num_values = math_ops.multiply(weights, array_ops.ones_like(is_correct))
return math_ops.div(math_ops.reduce_sum(is_correct),
math_ops.reduce_sum(num_values))
return math_ops.reduce_mean(is_correct)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:35,代码来源:classification.py
示例10: test_graph_replace_gradients
def test_graph_replace_gradients(self):
ops.reset_default_graph()
w = variables.VariableV1(0.0, name="w")
y = math_ops.multiply(math_ops.multiply(w, w, name="mul1"), w, name="mul2")
g = gradients_impl.gradients(y, w, name="grad")[0]
# Extract the operations.
replacement_ts = {w.value(): g}
original_mul1_grad = (ops.get_default_graph().
get_operation_by_name("grad/mul1_grad/Mul_1"))
# Should not raise exception.
res = ge.graph_replace(g, replacement_ts, dst_scope="res")
# Extract the operations after graph_replace.
result_mul1_grad = (ops.get_default_graph().
get_operation_by_name("res/grad/mul1_grad/Mul_1"))
# Make sure _original_ops are as expected.
self.assertEqual(original_mul1_grad._original_op.name, u"mul1")
self.assertEqual(result_mul1_grad._original_op.name, u"res/mul1")
self.assertNotEqual(res.name, g.name)
with session.Session() as sess:
sess.run(variables.global_variables_initializer())
g_val, res_val = sess.run([g, res])
self.assertNear(g_val, 0.0, ERROR_TOLERANCE)
self.assertNear(res_val, 0.0, ERROR_TOLERANCE)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:27,代码来源:transform_test.py
示例11: log_loss
def log_loss(predictions, labels=None, weights=1.0, epsilon=1e-7, scope=None):
"""Adds a Log Loss term to the training procedure.
`weights` acts as a coefficient for the loss. If a scalar is provided, then
the loss is simply scaled by the given value. If `weights` is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the `weights` vector. If the shape of
`weights` matches the shape of `predictions`, then the loss of each
measurable element of `predictions` is scaled by the corresponding value of
`weights`.
Args:
predictions: The predicted outputs.
labels: The ground truth output tensor, same dimensions as 'predictions'.
weights: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches `predictions`.
epsilon: A small increment to add to avoid taking a log of zero.
scope: The scope for the operations performed in computing the loss.
Returns:
A scalar `Tensor` representing the loss value.
Raises:
ValueError: If the shape of `predictions` doesn't match that of `labels` or
if the shape of `weights` is invalid.
"""
with ops.name_scope(scope, "log_loss",
[predictions, labels, weights]) as scope:
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
predictions = math_ops.to_float(predictions)
labels = math_ops.to_float(labels)
losses = -math_ops.multiply(
labels, math_ops.log(predictions + epsilon)) - math_ops.multiply(
(1 - labels), math_ops.log(1 - predictions + epsilon))
return compute_weighted_loss(losses, weights, scope=scope)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:35,代码来源:loss_ops.py
示例12: _Update_global_variables
def _Update_global_variables():
local_vars = [v for g, v in grads_and_vars if g is not None]
global_center_vars = [self._global_map[var] for var in local_vars]
local_center_vars = [self._local_map[var] for var in local_vars]
local_center_vars_update = []
for lvar, var in zip(local_center_vars, global_center_vars):
local_center_vars_update.append(lvar.assign(var))
update_ops = []
differences = []
with ops.control_dependencies(local_center_vars_update):
for v, lv in zip(local_vars, local_center_vars):
with ops.device(v.device):
differences.append(math_ops.subtract(v, lv))
for lvar, diff in zip(local_vars, differences):
with ops.device(lvar.device):
update_ops.append(
state_ops.assign_sub(lvar,
math_ops.multiply(self._moving_rate,
diff)))
for var, diff in zip(global_center_vars, differences):
with ops.device(var.device):
update_ops.append(
state_ops.assign_add(var,
math_ops.multiply(self._moving_rate,
diff)))
if global_step:
with ops.colocate_with(global_step):
update_ops.append(state_ops.assign_add(global_step, 1))
variable_update = control_flow_ops.group(*(update_ops))
return variable_update
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:30,代码来源:elastic_average_optimizer.py
示例13: _SquareGrad
def _SquareGrad(op, grad):
x = op.inputs[0]
# Added control dependencies to prevent 2*x from being computed too early.
with ops.control_dependencies([grad]):
x = math_ops.conj(x)
y = constant_op.constant(2.0, dtype=x.dtype)
return math_ops.multiply(grad, math_ops.multiply(x, y))
开发者ID:PuchatekwSzortach,项目名称:tensorflow,代码行数:7,代码来源:math_grad.py
示例14: decayed_lr
def decayed_lr(learning_rate, global_step, decay_steps, end_learning_rate,
power, cycle, name):
"""Helper to recompute learning rate; most helpful in eager-mode."""
with ops.name_scope(
name, "PolynomialDecay",
[learning_rate, global_step, decay_steps, end_learning_rate, power]
) as name:
learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
dtype = learning_rate.dtype
end_learning_rate = math_ops.cast(end_learning_rate, dtype)
power = math_ops.cast(power, dtype)
global_step_recomp = math_ops.cast(global_step, dtype)
decay_steps_recomp = math_ops.cast(decay_steps, dtype)
if cycle:
# Find the first multiple of decay_steps that is bigger than
# global_step. If global_step is zero set the multiplier to 1
multiplier = control_flow_ops.cond(
math_ops.equal(global_step_recomp, 0), lambda: 1.0,
lambda: math_ops.ceil(global_step_recomp / decay_steps))
decay_steps_recomp = math_ops.multiply(decay_steps_recomp, multiplier)
else:
# Make sure that the global_step used is not bigger than decay_steps.
global_step_recomp = math_ops.minimum(global_step_recomp, decay_steps)
p = math_ops.div(global_step_recomp, decay_steps_recomp)
return math_ops.add(
math_ops.multiply(learning_rate - end_learning_rate,
math_ops.pow(1 - p, power)),
end_learning_rate,
name=name)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:31,代码来源:learning_rate_decay_v2.py
示例15: unregularized_loss
def unregularized_loss(self, examples):
"""Add operations to compute the loss (without the regularization loss).
Args:
examples: Examples to compute unregularized loss on.
Returns:
An Operation that computes mean (unregularized) loss for given set of
examples.
Raises:
ValueError: if examples are not well defined.
"""
self._assertSpecified([
'example_labels', 'example_weights', 'sparse_features', 'dense_features'
], examples)
self._assertList(['sparse_features', 'dense_features'], examples)
with name_scope('sdca/unregularized_loss'):
predictions = math_ops.cast(
self._linear_predictions(examples), dtypes.float64)
labels = math_ops.cast(
internal_convert_to_tensor(examples['example_labels']),
dtypes.float64)
weights = math_ops.cast(
internal_convert_to_tensor(examples['example_weights']),
dtypes.float64)
if self._options['loss_type'] == 'logistic_loss':
return math_ops.reduce_sum(math_ops.multiply(
sigmoid_cross_entropy_with_logits(labels=labels,
logits=predictions),
weights)) / math_ops.reduce_sum(weights)
if self._options['loss_type'] == 'poisson_loss':
return math_ops.reduce_sum(math_ops.multiply(
log_poisson_loss(targets=labels, log_input=predictions),
weights)) / math_ops.reduce_sum(weights)
if self._options['loss_type'] in ['hinge_loss', 'smooth_hinge_loss']:
# hinge_loss = max{0, 1 - y_i w*x} where y_i \in {-1, 1}. So, we need to
# first convert 0/1 labels into -1/1 labels.
all_ones = array_ops.ones_like(predictions)
adjusted_labels = math_ops.subtract(2 * labels, all_ones)
# Tensor that contains (unweighted) error (hinge loss) per
# example.
error = nn_ops.relu(
math_ops.subtract(all_ones,
math_ops.multiply(adjusted_labels, predictions)))
weighted_error = math_ops.multiply(error, weights)
return math_ops.reduce_sum(weighted_error) / math_ops.reduce_sum(
weights)
# squared loss
err = math_ops.subtract(labels, predictions)
weighted_squared_err = math_ops.multiply(math_ops.square(err), weights)
# SDCA squared loss function is sum(err^2) / (2*sum(weights))
return (math_ops.reduce_sum(weighted_squared_err) /
(2.0 * math_ops.reduce_sum(weights)))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:59,代码来源:sdca_ops.py
示例16: testSmartCondFalse
def testSmartCondFalse(self):
with ops.Graph().as_default():
with session.Session():
x = constant_op.constant(4)
y = constant_op.constant(3)
z = smart_cond.smart_cond(False, lambda: math_ops.multiply(x, 16),
lambda: math_ops.multiply(y, 3))
self.assertEqual(z.eval(), 9)
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:8,代码来源:smart_cond_test.py
示例17: testSmartCondTrue
def testSmartCondTrue(self):
with ops.Graph().as_default():
with session.Session():
x = constant_op.constant(2)
y = constant_op.constant(5)
z = smart_cond.smart_cond(True, lambda: math_ops.multiply(x, 16),
lambda: math_ops.multiply(y, 5))
self.assertEqual(z.eval(), 32)
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:8,代码来源:smart_cond_test.py
示例18: fn
def fn():
two = constant_op.constant(2.0, name='two')
ten = constant_op.constant(10.0, name='ten')
twenty = math_ops.multiply(two, ten, name='twenty')
three = constant_op.constant(3.0, name='three')
with framework_ops.colocate_with(twenty):
thirty = math_ops.multiply(three, ten, name='thirty')
return ten, twenty, thirty
开发者ID:aritratony,项目名称:tensorflow,代码行数:8,代码来源:lift_to_graph_test.py
示例19: decayed_lr
def decayed_lr():
"""Helper to recompute learning rate; most helpful in eager-mode."""
global_step_recomp = math_ops.cast(global_step, dtype)
p = global_step_recomp / decay_steps
if staircase:
p = math_ops.floor(p)
exponent = math_ops.exp(
math_ops.multiply(math_ops.negative(decay_rate), p))
return math_ops.multiply(learning_rate, exponent, name=name)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:9,代码来源:learning_rate_decay.py
示例20: testFeedOneHandleDirectly
def testFeedOneHandleDirectly(self):
with self.test_session() as sess:
a = constant_op.constant(10.0)
b = constant_op.constant(5.0)
c = math_ops.multiply(a, b)
d = math_ops.multiply(c, c)
h_c = sess.run(session_ops.get_session_handle(c))
self.assertAllClose(2500.0, sess.run(d, feed_dict={c: h_c}))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:10,代码来源:session_ops_test.py
注:本文中的tensorflow.python.ops.math_ops.multiply函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论