本文整理汇总了Python中tensorflow.python.ops.math_ops.imag函数的典型用法代码示例。如果您正苦于以下问题:Python imag函数的具体用法?Python imag怎么用?Python imag使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了imag函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _compareRealImag
def _compareRealImag(self, cplx, use_gpu):
np_real, np_imag = np.real(cplx), np.imag(cplx)
np_zeros = np_real * 0
with self.test_session(use_gpu=use_gpu,
force_gpu=use_gpu and test_util.is_gpu_available()):
inx = ops.convert_to_tensor(cplx)
tf_real = math_ops.real(inx)
tf_imag = math_ops.imag(inx)
tf_real_real = math_ops.real(tf_real)
tf_imag_real = math_ops.imag(tf_real)
self.assertAllEqual(np_real, self.evaluate(tf_real))
self.assertAllEqual(np_imag, self.evaluate(tf_imag))
self.assertAllEqual(np_real, self.evaluate(tf_real_real))
self.assertAllEqual(np_zeros, self.evaluate(tf_imag_real))
开发者ID:bunbutter,项目名称:tensorflow,代码行数:14,代码来源:cwise_ops_test.py
示例2: _compareRealImag
def _compareRealImag(self, cplx, use_gpu):
np_real, np_imag = np.real(cplx), np.imag(cplx)
np_zeros = np_real * 0
with test_util.device(use_gpu=use_gpu):
inx = ops.convert_to_tensor(cplx)
tf_real = math_ops.real(inx)
tf_imag = math_ops.imag(inx)
tf_real_real = math_ops.real(tf_real)
tf_imag_real = math_ops.imag(tf_real)
self.assertAllEqual(np_real, self.evaluate(tf_real))
self.assertAllEqual(np_imag, self.evaluate(tf_imag))
self.assertAllEqual(np_real, self.evaluate(tf_real_real))
self.assertAllEqual(np_zeros, self.evaluate(tf_imag_real))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:14,代码来源:cwise_ops_test.py
示例3: test_defining_spd_operator_by_taking_real_part
def test_defining_spd_operator_by_taking_real_part(self):
with self.cached_session() as sess:
# S is real and positive.
s = linear_operator_test_util.random_uniform(
shape=(10, 2, 3, 4), dtype=dtypes.float32, minval=1., maxval=2.)
# Let S = S1 + S2, the Hermitian and anti-hermitian parts.
# S1 = 0.5 * (S + S^H), S2 = 0.5 * (S - S^H),
# where ^H is the Hermitian transpose of the function:
# f(n0, n1, n2)^H := ComplexConjugate[f(N0-n0, N1-n1, N2-n2)].
# We want to isolate S1, since
# S1 is Hermitian by construction
# S1 is real since S is
# S1 is positive since it is the sum of two positive kernels
# IDFT[S] = IDFT[S1] + IDFT[S2]
# = H1 + H2
# where H1 is real since it is Hermitian,
# and H2 is imaginary since it is anti-Hermitian.
ifft_s = fft_ops.ifft3d(math_ops.cast(s, dtypes.complex64))
# Throw away H2, keep H1.
real_ifft_s = math_ops.real(ifft_s)
# This is the perfect spectrum!
# spectrum = DFT[H1]
# = S1,
fft_real_ifft_s = fft_ops.fft3d(
math_ops.cast(real_ifft_s, dtypes.complex64))
# S1 is Hermitian ==> operator is real.
# S1 is real ==> operator is self-adjoint.
# S1 is positive ==> operator is positive-definite.
operator = linalg.LinearOperatorCirculant3D(fft_real_ifft_s)
# Allow for complex output so we can check operator has zero imag part.
self.assertEqual(operator.dtype, dtypes.complex64)
matrix, matrix_t = sess.run([
operator.to_dense(),
array_ops.matrix_transpose(operator.to_dense())
])
operator.assert_positive_definite().run() # Should not fail.
np.testing.assert_allclose(0, np.imag(matrix), atol=1e-6)
self.assertAllClose(matrix, matrix_t)
# Just to test the theory, get S2 as well.
# This should create an imaginary operator.
# S2 is anti-Hermitian ==> operator is imaginary.
# S2 is real ==> operator is self-adjoint.
imag_ifft_s = math_ops.imag(ifft_s)
fft_imag_ifft_s = fft_ops.fft3d(
1j * math_ops.cast(imag_ifft_s, dtypes.complex64))
operator_imag = linalg.LinearOperatorCirculant3D(fft_imag_ifft_s)
matrix, matrix_h = sess.run([
operator_imag.to_dense(),
array_ops.matrix_transpose(math_ops.conj(operator_imag.to_dense()))
])
self.assertAllClose(matrix, matrix_h)
np.testing.assert_allclose(0, np.real(matrix), atol=1e-7)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:60,代码来源:linear_operator_circulant_test.py
示例4: _compareMulGradient
def _compareMulGradient(self, data):
# data is a float matrix of shape [n, 4]. data[:, 0], data[:, 1],
# data[:, 2], data[:, 3] are real parts of x, imaginary parts of
# x, real parts of y and imaginary parts of y.
with self.cached_session():
inp = ops.convert_to_tensor(data)
xr, xi, yr, yi = array_ops.split(value=inp, num_or_size_splits=4, axis=1)
def vec(x): # Reshape to a vector
return array_ops.reshape(x, [-1])
xr, xi, yr, yi = vec(xr), vec(xi), vec(yr), vec(yi)
def cplx(r, i): # Combine to a complex vector
return math_ops.complex(r, i)
x, y = cplx(xr, xi), cplx(yr, yi)
# z is x times y in complex plane.
z = x * y
# Defines the loss function as the sum of all coefficients of z.
loss = math_ops.reduce_sum(math_ops.real(z) + math_ops.imag(z))
epsilon = 0.005
jacob_t, jacob_n = gradient_checker.compute_gradient(
inp, list(data.shape), loss, [1], x_init_value=data, delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:25,代码来源:cwise_ops_test.py
示例5: _trace
def _trace(self):
# The diagonal of the [[nested] block] circulant operator is the mean of
# the spectrum.
# Proof: For the [0,...,0] element, this follows from the IDFT formula.
# Then the result follows since all diagonal elements are the same.
# Therefore, the trace is the sum of the spectrum.
# Get shape of diag along with the axis over which to reduce the spectrum.
# We will reduce the spectrum over all block indices.
if self.spectrum.get_shape().is_fully_defined():
spec_rank = self.spectrum.get_shape().ndims
axis = np.arange(spec_rank - self.block_depth, spec_rank, dtype=np.int32)
else:
spec_rank = array_ops.rank(self.spectrum)
axis = math_ops.range(spec_rank - self.block_depth, spec_rank)
# Real diag part "re_d".
# Suppose spectrum.shape = [B1,...,Bb, N1, N2]
# self.shape = [B1,...,Bb, N, N], with N1 * N2 = N.
# re_d_value.shape = [B1,...,Bb]
re_d_value = math_ops.reduce_sum(math_ops.real(self.spectrum), axis=axis)
if not self.dtype.is_complex:
return math_ops.cast(re_d_value, self.dtype)
# Imaginary part, "im_d".
if self.is_self_adjoint:
im_d_value = 0.
else:
im_d_value = math_ops.reduce_sum(math_ops.imag(self.spectrum), axis=axis)
return math_ops.cast(math_ops.complex(re_d_value, im_d_value), self.dtype)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:33,代码来源:linear_operator_circulant.py
示例6: _ComplexGrad
def _ComplexGrad(op, grad):
"""Returns the real and imaginary components of 'grad', respectively."""
x = op.inputs[0]
y = op.inputs[1]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
return (array_ops.reshape(math_ops.reduce_sum(math_ops.real(grad), rx), sx),
array_ops.reshape(math_ops.reduce_sum(math_ops.imag(grad), ry), sy))
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:9,代码来源:math_grad.py
示例7: test_simple_hermitian_spectrum_gives_operator_with_zero_imag_part
def test_simple_hermitian_spectrum_gives_operator_with_zero_imag_part(self):
with self.test_session():
spectrum = math_ops.cast([1., 1j, -1j], dtypes.complex64)
operator = linalg.LinearOperatorCirculant(
spectrum, input_output_dtype=dtypes.complex64)
matrix = operator.to_dense()
imag_matrix = math_ops.imag(matrix)
eps = np.finfo(np.float32).eps
np.testing.assert_allclose(0, imag_matrix.eval(), rtol=0, atol=eps * 3)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:9,代码来源:linear_operator_circulant_test.py
示例8: _AngleGrad
def _AngleGrad(op, grad):
"""Returns -grad / (Im(x) + iRe(x))"""
x = op.inputs[0]
with ops.control_dependencies([grad]):
re = math_ops.real(x)
im = math_ops.imag(x)
z = math_ops.reciprocal(math_ops.complex(im, re))
zero = constant_op.constant(0, dtype=grad.dtype)
complex_grad = math_ops.complex(grad, zero)
return -complex_grad * z
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:10,代码来源:math_grad.py
示例9: test_hermitian_spectrum_gives_operator_with_zero_imag_part
def test_hermitian_spectrum_gives_operator_with_zero_imag_part(self):
with self.cached_session():
# Make spectrum the FFT of a real convolution kernel h. This ensures that
# spectrum is Hermitian.
h = linear_operator_test_util.random_normal(shape=(3, 4))
spectrum = fft_ops.fft(math_ops.cast(h, dtypes.complex64))
operator = linalg.LinearOperatorCirculant(
spectrum, input_output_dtype=dtypes.complex64)
matrix = operator.to_dense()
imag_matrix = math_ops.imag(matrix)
eps = np.finfo(np.float32).eps
np.testing.assert_allclose(
0, self.evaluate(imag_matrix), rtol=0, atol=eps * 3 * 4)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:13,代码来源:linear_operator_circulant_test.py
示例10: _assert_imag_part_zero
def _assert_imag_part_zero(x, message=None):
"""Assert that floating or complex 'x' is real."""
dtype = x.dtype.base_dtype
if dtype.is_floating:
return control_flow_ops.no_op()
if not dtype.is_complex:
raise TypeError(
"imag_part_zero only handles float or complex types. Found: %s"
% dtype)
zero = ops.convert_to_tensor(0, dtype=dtype.real_dtype)
return check_ops.assert_equal(zero, math_ops.imag(x), message=message)
开发者ID:RapidApplicationDevelopment,项目名称:tensorflow,代码行数:13,代码来源:linear_operator_diag.py
示例11: test_real_hermitian_spectrum_gives_real_symmetric_operator
def test_real_hermitian_spectrum_gives_real_symmetric_operator(self):
with self.cached_session() as sess:
# This is a real and hermitian spectrum.
spectrum = [[1., 2., 2.], [3., 4., 4.], [3., 4., 4.]]
operator = linalg.LinearOperatorCirculant(spectrum)
matrix_tensor = operator.to_dense()
self.assertEqual(matrix_tensor.dtype, dtypes.complex64)
matrix_t = array_ops.matrix_transpose(matrix_tensor)
imag_matrix = math_ops.imag(matrix_tensor)
matrix, matrix_transpose, imag_matrix = sess.run(
[matrix_tensor, matrix_t, imag_matrix])
np.testing.assert_allclose(0, imag_matrix, atol=1e-6)
self.assertAllClose(matrix, matrix_transpose, atol=0)
开发者ID:aritratony,项目名称:tensorflow,代码行数:15,代码来源:linear_operator_circulant_test.py
示例12: _compareGradient
def _compareGradient(self, x):
# x[:, 0] is real, x[:, 1] is imag. We combine real and imag into
# complex numbers. Then, we extract real and imag parts and
# computes the squared sum. This is obviously the same as sum(real
# * real) + sum(imag * imag). We just want to make sure the
# gradient function is checked.
with self.cached_session():
inx = ops.convert_to_tensor(x)
real, imag = array_ops.split(value=inx, num_or_size_splits=2, axis=1)
real, imag = array_ops.reshape(real, [-1]), array_ops.reshape(imag, [-1])
cplx = math_ops.complex(real, imag)
cplx = math_ops.conj(cplx)
loss = math_ops.reduce_sum(math_ops.square(
math_ops.real(cplx))) + math_ops.reduce_sum(
math_ops.square(math_ops.imag(cplx)))
epsilon = 1e-3
jacob_t, jacob_n = gradient_checker.compute_gradient(
inx, list(x.shape), loss, [1], x_init_value=x, delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:19,代码来源:cwise_ops_test.py
示例13: assert_zero_imag_part
def assert_zero_imag_part(x, message=None, name="assert_zero_imag_part"):
"""Returns `Op` that asserts Tensor `x` has no non-zero imaginary parts.
Args:
x: Numeric `Tensor`, real, integer, or complex.
message: A string message to prepend to failure message.
name: A name to give this `Op`.
Returns:
An `Op` that asserts `x` has no entries with modulus zero.
"""
with ops.name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
dtype = x.dtype.base_dtype
if dtype.is_floating:
return control_flow_ops.no_op()
zero = ops.convert_to_tensor(0, dtype=dtype.real_dtype)
return check_ops.assert_equal(zero, math_ops.imag(x), message=message)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:20,代码来源:linear_operator_util.py
示例14: assert_hermitian_spectrum
def assert_hermitian_spectrum(self, name="assert_hermitian_spectrum"):
"""Returns an `Op` that asserts this operator has Hermitian spectrum.
This operator corresponds to a real-valued matrix if and only if its
spectrum is Hermitian.
Args:
name: A name to give this `Op`.
Returns:
An `Op` that asserts this operator has Hermitian spectrum.
"""
eps = np.finfo(self.dtype.real_dtype.as_numpy_dtype).eps
with self._name_scope(name):
# Assume linear accumulation of error.
max_err = eps * self.domain_dimension_tensor()
imag_convolution_kernel = math_ops.imag(self.convolution_kernel())
return check_ops.assert_less(
math_ops.abs(imag_convolution_kernel),
max_err,
message="Spectrum was not Hermitian")
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:21,代码来源:linear_operator_circulant.py
示例15: _abs_square
def _abs_square(x):
if x.dtype.is_complex:
return math_ops.square(math_ops.real(x)) + math_ops.square(math_ops.imag(x))
else:
return math_ops.square(x)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:5,代码来源:odes.py
示例16: _ComplexGrad
def _ComplexGrad(_, grad):
"""Returns the real and imaginary components of 'grad', respectively."""
return math_ops.real(grad), math_ops.imag(grad)
开发者ID:TeMedy,项目名称:tensorflow,代码行数:3,代码来源:math_grad.py
示例17: _assert_self_adjoint
def _assert_self_adjoint(self):
imag_multiplier = math_ops.imag(self.multiplier)
return check_ops.assert_equal(
array_ops.zeros_like(imag_multiplier),
imag_multiplier,
message="LinearOperator was not self-adjoint")
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:6,代码来源:linear_operator_identity.py
注:本文中的tensorflow.python.ops.math_ops.imag函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论