• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python math_ops.digamma函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.math_ops.digamma函数的典型用法代码示例。如果您正苦于以下问题:Python digamma函数的具体用法?Python digamma怎么用?Python digamma使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了digamma函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _kl_beta_beta

def _kl_beta_beta(d1, d2, name=None):
  """Calculate the batchwise KL divergence KL(d1 || d2) with d1 and d2 Beta.

  Args:
    d1: instance of a Beta distribution object.
    d2: instance of a Beta distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_beta_beta".

  Returns:
    Batchwise KL(d1 || d2)
  """
  def delta(fn, is_property=True):
    fn1 = getattr(d1, fn)
    fn2 = getattr(d2, fn)
    return (fn2 - fn1) if is_property else (fn2() - fn1())
  with ops.name_scope(name, "kl_beta_beta", values=[
      d1.concentration1,
      d1.concentration0,
      d1.total_concentration,
      d2.concentration1,
      d2.concentration0,
      d2.total_concentration,
  ]):
    return (delta("_log_normalization", is_property=False)
            - math_ops.digamma(d1.concentration1) * delta("concentration1")
            - math_ops.digamma(d1.concentration0) * delta("concentration0")
            + (math_ops.digamma(d1.total_concentration)
               * delta("total_concentration")))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:29,代码来源:beta.py


示例2: _entropy

 def _entropy(self):
   return (
       self._log_normalization()
       - (self.concentration1 - 1.) * math_ops.digamma(self.concentration1)
       - (self.concentration0 - 1.) * math_ops.digamma(self.concentration0)
       + ((self.total_concentration - 2.) *
          math_ops.digamma(self.total_concentration)))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:7,代码来源:beta.py


示例3: _entropy

 def _entropy(self):
   return (math_ops.lgamma(self.a) -
           (self.a - 1.) * math_ops.digamma(self.a) +
           math_ops.lgamma(self.b) -
           (self.b - 1.) * math_ops.digamma(self.b) -
           math_ops.lgamma(self.a_b_sum) +
           (self.a_b_sum - 2.) * math_ops.digamma(self.a_b_sum))
开发者ID:cg31,项目名称:tensorflow,代码行数:7,代码来源:beta.py


示例4: _entropy

 def _entropy(self):
   entropy = special_math_ops.lbeta(self.alpha)
   entropy += math_ops.digamma(self.alpha_sum) * (
       self.alpha_sum - math_ops.cast(self.event_shape()[0], self.dtype))
   entropy += -math_ops.reduce_sum(
       (self.alpha - 1.) * math_ops.digamma(self.alpha),
       reduction_indices=[-1],
       keep_dims=False)
   return entropy
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:9,代码来源:dirichlet.py


示例5: _entropy

 def _entropy(self):
   k = math_ops.cast(self.event_shape_tensor()[0], self.dtype)
   return (
       self._log_normalization()
       + ((self.total_concentration - k)
          * math_ops.digamma(self.total_concentration))
       - math_ops.reduce_sum(
           (self.concentration - 1.) * math_ops.digamma(self.concentration),
           axis=-1))
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:9,代码来源:dirichlet.py


示例6: _entropy

 def _entropy(self):
   u = array_ops.expand_dims(self.df * self._ones(), -1)
   v = array_ops.expand_dims(self._ones(), -1)
   beta_arg = array_ops.concat_v2([u, v], len(u.get_shape()) - 1) / 2
   half_df = 0.5 * self.df
   return ((0.5 + half_df) *
           (math_ops.digamma(0.5 + half_df) - math_ops.digamma(half_df)) + 0.5
           * math_ops.log(self.df) + special_math_ops.lbeta(beta_arg) +
           math_ops.log(self.sigma))
开发者ID:kadeng,项目名称:tensorflow,代码行数:9,代码来源:student_t.py


示例7: _entropy

 def _entropy(self):
   v = array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)[..., None]
   u = v * self.df[..., None]
   beta_arg = array_ops.concat([u, v], -1) / 2.
   return (math_ops.log(math_ops.abs(self.scale)) +
           0.5 * math_ops.log(self.df) +
           special_math_ops.lbeta(beta_arg) +
           0.5 * (self.df + 1.) *
           (math_ops.digamma(0.5 * (self.df + 1.)) -
            math_ops.digamma(0.5 * self.df)))
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:10,代码来源:student_t.py


示例8: entropy

  def entropy(self, name="entropy"):
    """Entropy of the distribution in nats."""
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self._a, self._b, self._a_b_sum]):
        a = self._a
        b = self._b
        a_b_sum = self._a_b_sum

        entropy = math_ops.lgamma(a) - (a - 1) * math_ops.digamma(a)
        entropy += math_ops.lgamma(b) - (b - 1) * math_ops.digamma(b)
        entropy += -math_ops.lgamma(a_b_sum) + (
            a_b_sum - 2) * math_ops.digamma(a_b_sum)
        return entropy
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:13,代码来源:beta.py


示例9: _kl_gamma_gamma

def _kl_gamma_gamma(g0, g1, name=None):
  """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.

  Args:
    g0: instance of a Gamma distribution object.
    g1: instance of a Gamma distribution object.
    name: (optional) Name to use for created operations.
      Default is "kl_gamma_gamma".

  Returns:
    kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
  """
  with ops.name_scope(name, "kl_gamma_gamma", values=[
      g0.concentration, g0.rate, g1.concentration, g1.rate]):
    # Result from:
    #   http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
    # For derivation see:
    #   http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions   pylint: disable=line-too-long
    return (((g0.concentration - g1.concentration)
             * math_ops.digamma(g0.concentration))
            + math_ops.lgamma(g1.concentration)
            - math_ops.lgamma(g0.concentration)
            + g1.concentration * math_ops.log(g0.rate)
            - g1.concentration * math_ops.log(g1.rate)
            + g0.concentration * (g1.rate / g0.rate - 1.))
开发者ID:aritratony,项目名称:tensorflow,代码行数:25,代码来源:gamma.py


示例10: _harmonic_number

def _harmonic_number(x):
  """Compute the harmonic number from its analytic continuation.

  Derivation from [here](
  https://en.wikipedia.org/wiki/Digamma_function#Relation_to_harmonic_numbers)
  and [Euler's constant](
  https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant).

  Args:
    x: input float.

  Returns:
    z: The analytic continuation of the harmonic number for the input.
  """
  one = array_ops.ones([], dtype=x.dtype)
  return math_ops.digamma(x + one) - math_ops.digamma(one)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:16,代码来源:kumaraswamy.py


示例11: _multi_digamma

 def _multi_digamma(self, a, p, name='multi_digamma'):
   """Computes the multivariate digamma function; Psi_p(a)."""
   with ops.name_scope(self.name):
     with ops.name_scope(name, values=[a, p]):
       seq = self._multi_gamma_sequence(a, p)
       return math_ops.reduce_sum(math_ops.digamma(seq),
                                  reduction_indices=(-1,))
开发者ID:abhishekns,项目名称:tensorflow,代码行数:7,代码来源:wishart.py


示例12: _entropy

 def _entropy(self):
     return (
         self.alpha
         + math_ops.log(self.beta)
         + math_ops.lgamma(self.alpha)
         - (1.0 + self.alpha) * math_ops.digamma(self.alpha)
     )
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:7,代码来源:inverse_gamma.py


示例13: entropy

  def entropy(self, name="entropy"):
    """Entropy of the distribution in nats."""
    with ops.name_scope(self.name):
      with ops.op_scope([self._alpha, self._alpha_0], name):
        alpha = self._alpha
        alpha_0 = self._alpha_0

        entropy = special_math_ops.lbeta(alpha)
        entropy += (alpha_0 - math_ops.cast(
            self.event_shape()[0], self.dtype)) * math_ops.digamma(
                alpha_0)
        entropy += -math_ops.reduce_sum(
            (alpha - 1) * math_ops.digamma(alpha),
            reduction_indices=[-1],
            keep_dims=False)
        return entropy
开发者ID:10imaging,项目名称:tensorflow,代码行数:16,代码来源:dirichlet.py


示例14: _chain_gets_correct_expectations

  def _chain_gets_correct_expectations(self, x, independent_chain_ndims,
                                       sess, feed_dict=None):
    counter = collections.Counter()
    def log_gamma_log_prob(x):
      counter["target_calls"] += 1
      event_dims = math_ops.range(independent_chain_ndims,
                                  array_ops.rank(x))
      return self._log_gamma_log_prob(x, event_dims)

    num_results = array_ops.placeholder(
        np.int32, [], name="num_results")
    step_size = array_ops.placeholder(
        np.float32, [], name="step_size")
    num_leapfrog_steps = array_ops.placeholder(
        np.int32, [], name="num_leapfrog_steps")

    if feed_dict is None:
      feed_dict = {}
    feed_dict.update({num_results: 150,
                      step_size: 0.05,
                      num_leapfrog_steps: 2})

    samples, kernel_results = hmc.sample_chain(
        num_results=num_results,
        target_log_prob_fn=log_gamma_log_prob,
        current_state=x,
        step_size=step_size,
        num_leapfrog_steps=num_leapfrog_steps,
        num_burnin_steps=150,
        seed=42)

    self.assertAllEqual(dict(target_calls=2), counter)

    expected_x = (math_ops.digamma(self._shape_param)
                  - np.log(self._rate_param))

    expected_exp_x = self._shape_param / self._rate_param

    log_accept_ratio_, samples_, expected_x_ = sess.run(
        [kernel_results.log_accept_ratio, samples, expected_x],
        feed_dict)

    actual_x = samples_.mean()
    actual_exp_x = np.exp(samples_).mean()
    acceptance_probs = np.exp(np.minimum(log_accept_ratio_, 0.))

    logging_ops.vlog(1, "True      E[x, exp(x)]: {}\t{}".format(
        expected_x_, expected_exp_x))
    logging_ops.vlog(1, "Estimated E[x, exp(x)]: {}\t{}".format(
        actual_x, actual_exp_x))
    self.assertNear(actual_x, expected_x_, 2e-2)
    self.assertNear(actual_exp_x, expected_exp_x, 2e-2)
    self.assertAllEqual(np.ones_like(acceptance_probs, np.bool),
                        acceptance_probs > 0.5)
    self.assertAllEqual(np.ones_like(acceptance_probs, np.bool),
                        acceptance_probs <= 1.)
开发者ID:QiangCai,项目名称:tensorflow,代码行数:56,代码来源:hmc_test.py


示例15: entropy

  def entropy(self, name="entropy"):
    """The entropy of Student t distribution(s).

    Args:
      name: The name to give this op.

    Returns:
      entropy: tensor of dtype `dtype`, the entropy.
    """
    with ops.name_scope(self.name):
      with ops.op_scope([self._df, self._sigma], name):
        u = array_ops.expand_dims(self._df + self._zeros(), -1)
        v = array_ops.expand_dims(self._ones(), -1)
        beta_arg = array_ops.concat(len(u.get_shape()) - 1, [u, v]) / 2
        return ((self._df + 1) / 2 * (math_ops.digamma((self._df + 1) / 2) -
                                      math_ops.digamma(self._df / 2)) +
                math_ops.log(self._df) / 2 +
                special_math_ops.lbeta(beta_arg) +
                math_ops.log(self._sigma))
开发者ID:0ruben,项目名称:tensorflow,代码行数:19,代码来源:student_t.py


示例16: _kl_beta_beta

def _kl_beta_beta(d1, d2, name=None):
  """Calculate the batched KL divergence KL(d1 || d2) with d1 and d2 Beta.

  Args:
    d1: instance of a Beta distribution object.
    d2: instance of a Beta distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_beta_beta".

  Returns:
    Batchwise KL(d1 || d2)
  """
  inputs = [d1.a, d1.b, d1.a_b_sum, d2.a_b_sum]
  with ops.name_scope(name, "kl_beta_beta", inputs):
    # ln(B(a', b') / B(a, b))
    log_betas = (math_ops.lgamma(d2.a) + math_ops.lgamma(d2.b)
                - math_ops.lgamma(d2.a_b_sum) + math_ops.lgamma(d1.a_b_sum)
                - math_ops.lgamma(d1.a) - math_ops.lgamma(d1.b))
    # (a - a')*psi(a) + (b - b')*psi(b) + (a' - a + b' - b)*psi(a + b)
    digammas = ((d1.a - d2.a)*math_ops.digamma(d1.a)
              + (d1.b - d2.b)*math_ops.digamma(d1.b)
              + (d2.a_b_sum - d1.a_b_sum)*math_ops.digamma(d1.a_b_sum))
    return log_betas + digammas
开发者ID:cg31,项目名称:tensorflow,代码行数:23,代码来源:beta.py


示例17: _chain_gets_correct_expectations

  def _chain_gets_correct_expectations(self, x, independent_chain_ndims,
                                       sess, feed_dict=None):
    def log_gamma_log_prob(x):
      event_dims = math_ops.range(independent_chain_ndims,
                                  array_ops.rank(x))
      return self._log_gamma_log_prob(x, event_dims)

    num_results = array_ops.placeholder(
        np.int32, [], name="num_results")
    step_size = array_ops.placeholder(
        np.float32, [], name="step_size")
    num_leapfrog_steps = array_ops.placeholder(
        np.int32, [], name="num_leapfrog_steps")

    if feed_dict is None:
      feed_dict = {}
    feed_dict.update({num_results: 150,
                      step_size: 0.1,
                      num_leapfrog_steps: 2})

    samples, kernel_results = hmc.sample_chain(
        num_results=num_results,
        target_log_prob_fn=log_gamma_log_prob,
        current_state=x,
        step_size=step_size,
        num_leapfrog_steps=num_leapfrog_steps,
        num_burnin_steps=150,
        seed=42)

    expected_x = (math_ops.digamma(self._shape_param)
                  - np.log(self._rate_param))

    expected_exp_x = self._shape_param / self._rate_param

    acceptance_probs_, samples_, expected_x_ = sess.run(
        [kernel_results.acceptance_probs, samples, expected_x],
        feed_dict)

    actual_x = samples_.mean()
    actual_exp_x = np.exp(samples_).mean()

    logging_ops.vlog(1, "True      E[x, exp(x)]: {}\t{}".format(
        expected_x_, expected_exp_x))
    logging_ops.vlog(1, "Estimated E[x, exp(x)]: {}\t{}".format(
        actual_x, actual_exp_x))
    self.assertNear(actual_x, expected_x_, 2e-2)
    self.assertNear(actual_exp_x, expected_exp_x, 2e-2)
    self.assertTrue((acceptance_probs_ > 0.5).all())
    self.assertTrue((acceptance_probs_ <= 1.0).all())
开发者ID:ClowJ,项目名称:tensorflow,代码行数:49,代码来源:hmc_test.py


示例18: entropy

  def entropy(self, name="entropy"):
    """The entropy of Gamma distribution(s).

    This is defined to be

    ```entropy = alpha - log(beta) + log(Gamma(alpha))
                 + (1-alpha)digamma(alpha)```

    where digamma(alpha) is the digamma function.

    Args:
      name: The name to give this op.

    Returns:
      entropy: tensor of dtype `dtype`, the entropy.
    """
    with ops.op_scope([self.alpha, self._beta], self.name):
      with ops.name_scope(name):
        alpha = self._alpha
        beta = self._beta
        return (alpha - math_ops.log(beta) + math_ops.lgamma(alpha) +
                (1 - alpha) * math_ops.digamma(alpha))
开发者ID:277801235,项目名称:tensorflow,代码行数:22,代码来源:gamma.py


示例19: _LgammaGrad

def _LgammaGrad(op, grad):
  """Returns grad * digamma(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.digamma(x)
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:6,代码来源:math_grad.py


示例20: _kl_dirichlet_dirichlet

def _kl_dirichlet_dirichlet(d1, d2, name=None):
  """Batchwise KL divergence KL(d1 || d2) with d1 and d2 Dirichlet.

  Args:
    d1: instance of a Dirichlet distribution object.
    d2: instance of a Dirichlet distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_dirichlet_dirichlet".

  Returns:
    Batchwise KL(d1 || d2)
  """
  with ops.name_scope(name, "kl_dirichlet_dirichlet", values=[
      d1.concentration, d2.concentration]):
    # The KL between Dirichlet distributions can be derived as follows. We have
    #
    #   Dir(x; a) = 1 / B(a) * prod_i[x[i]^(a[i] - 1)]
    #
    # where B(a) is the multivariate Beta function:
    #
    #   B(a) = Gamma(a[1]) * ... * Gamma(a[n]) / Gamma(a[1] + ... + a[n])
    #
    # The KL is
    #
    #   KL(Dir(x; a), Dir(x; b)) = E_Dir(x; a){log(Dir(x; a) / Dir(x; b))}
    #
    # so we'll need to know the log density of the Dirichlet. This is
    #
    #   log(Dir(x; a)) = sum_i[(a[i] - 1) log(x[i])] - log B(a)
    #
    # The only term that matters for the expectations is the log(x[i]). To
    # compute the expectation of this term over the Dirichlet density, we can
    # use the following facts about the Dirichlet in exponential family form:
    #   1. log(x[i]) is a sufficient statistic
    #   2. expected sufficient statistics (of any exp family distribution) are
    #      equal to derivatives of the log normalizer with respect to
    #      corresponding natural parameters: E{T[i](x)} = dA/d(eta[i])
    #
    # To proceed, we can rewrite the Dirichlet density in exponential family
    # form as follows:
    #
    #   Dir(x; a) = exp{eta(a) . T(x) - A(a)}
    #
    # where '.' is the dot product of vectors eta and T, and A is a scalar:
    #
    #   eta[i](a) = a[i] - 1
    #     T[i](x) = log(x[i])
    #        A(a) = log B(a)
    #
    # Now, we can use fact (2) above to write
    #
    #   E_Dir(x; a)[log(x[i])]
    #       = dA(a) / da[i]
    #       = d/da[i] log B(a)
    #       = d/da[i] (sum_j lgamma(a[j])) - lgamma(sum_j a[j])
    #       = digamma(a[i])) - digamma(sum_j a[j])
    #
    # Putting it all together, we have
    #
    # KL[Dir(x; a) || Dir(x; b)]
    #     = E_Dir(x; a){log(Dir(x; a) / Dir(x; b)}
    #     = E_Dir(x; a){sum_i[(a[i] - b[i]) log(x[i])} - (lbeta(a) - lbeta(b))
    #     = sum_i[(a[i] - b[i]) * E_Dir(x; a){log(x[i])}] - lbeta(a) + lbeta(b)
    #     = sum_i[(a[i] - b[i]) * (digamma(a[i]) - digamma(sum_j a[j]))]
    #          - lbeta(a) + lbeta(b))

    digamma_sum_d1 = math_ops.digamma(
        math_ops.reduce_sum(d1.concentration, axis=-1, keepdims=True))
    digamma_diff = math_ops.digamma(d1.concentration) - digamma_sum_d1
    concentration_diff = d1.concentration - d2.concentration

    return (math_ops.reduce_sum(concentration_diff * digamma_diff, axis=-1) -
            special_math_ops.lbeta(d1.concentration) +
            special_math_ops.lbeta(d2.concentration))
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:74,代码来源:dirichlet.py



注:本文中的tensorflow.python.ops.math_ops.digamma函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python math_ops.div函数代码示例发布时间:2022-05-27
下一篇:
Python math_ops.cumsum函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap