本文整理汇总了Python中tensorflow.python.ops.math_ops._as_indexed_slices_list函数的典型用法代码示例。如果您正苦于以下问题:Python _as_indexed_slices_list函数的具体用法?Python _as_indexed_slices_list怎么用?Python _as_indexed_slices_list使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了_as_indexed_slices_list函数的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _AggregateIndexedSlicesGradients
def _AggregateIndexedSlicesGradients(grads):
"""Aggregates gradients of type `IndexedSlices` by concatenation."""
if len(grads) < 1:
return None
elif len(grads) == 1:
return grads[0]
else:
grads = math_ops._as_indexed_slices_list( # pylint: disable=protected-access
[g for g in grads if g is not None])
grads = [_HandleNestedIndexedSlices(x) for x in grads] # pylint: disable=protected-access
# Form IndexedSlices out of the concatenated values and indices.
concat_grad = ops.IndexedSlices(
array_ops.concat([x.values for x in grads], axis=0),
array_ops.concat([x.indices for x in grads], axis=0),
grads[0].dense_shape)
return concat_grad
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:17,代码来源:gradients_util.py
示例2: merge
def merge(inputs, name=None):
"""Returns the value of an available element of `inputs`.
This op tests each of the tensors in `inputs` in turn to determine if any of
them is available. If it finds an available tensor, it returns it and its
index in `inputs`.
It is an error if more than one tensor in `inputs` is available. If no tensor
in `inputs` is available, the returned tensor and index are not set.
This op handles both `Tensor`s and `IndexedSlices`. If inputs has a mix of
`Tensor`s and `IndexedSlices`, all inputs are converted to IndexedSlices
before merging.
Args:
inputs: The input tensors, at most one of which is available.
name: A name for this operation (optional).
Returns:
A tuple containing the chosen input tensor and its index in `inputs`.
Raises:
ValueError: If inputs are IndexedSlices and some but not all have a
dense_shape property.
"""
with ops.op_scope(inputs, name, "Merge") as name:
inputs = [ops.convert_to_tensor_or_indexed_slices(inp) for inp in inputs]
if all([isinstance(inp, ops.Tensor) for inp in inputs]):
return gen_control_flow_ops._merge(inputs, name=name)
else:
inputs = math_ops._as_indexed_slices_list(inputs)
values, _ = gen_control_flow_ops._merge([inp.values for inp in inputs],
name=name)
indices, chosen_index = gen_control_flow_ops._merge(
[inp.indices for inp in inputs], name="indices")
if any(inp.dense_shape for inp in inputs):
if not all(inp.dense_shape for inp in inputs):
raise ValueError("Either all merged IndexedSlices must have a "
"dense_shape, or none must have a dense_shape.")
dense_shape, _ = gen_control_flow_ops._merge(
[inp.dense_shape for inp in inputs], name="dense_shape")
else:
dense_shape = None
return ops.IndexedSlices(values, indices, dense_shape), chosen_index
开发者ID:fyafighter,项目名称:tensorflow,代码行数:44,代码来源:control_flow_ops.py
示例3: _AggregatedGrads
def _AggregatedGrads(grads, op, loop_state, aggregation_method=None):
"""Get the aggregated gradients for op.
Args:
grads: The map of memoized gradients.
op: The op to get gradients for.
loop_state: An object for maintaining the state of the while loops in the
graph. It is of type ControlFlowState. None if the graph
contains no while loops.
aggregation_method: Specifies the method used to combine gradient terms.
Accepted values are constants defined in the class `AggregationMethod`.
Returns:
A list of gradients, one per each output of `op`. If the gradients
for a particular output is a list, this function aggregates it
before returning.
Raises:
TypeError: if the incoming grads are not Tensors or IndexedSlices.
ValueError: if the arguments are invalid.
"""
if aggregation_method is None:
aggregation_method = AggregationMethod.DEFAULT
if aggregation_method not in [
AggregationMethod.ADD_N, AggregationMethod.EXPERIMENTAL_TREE,
AggregationMethod.EXPERIMENTAL_ACCUMULATE_N
]:
raise ValueError("Invalid aggregation_method specified %s." %
aggregation_method)
out_grads = _GetGrads(grads, op)
for i, out_grad in enumerate(out_grads):
if loop_state:
if isinstance(out_grad, (ops.Tensor, ops.IndexedSlices)):
assert control_flow_ops.IsLoopSwitch(op)
continue
# Grads have to be Tensors or IndexedSlices
if (isinstance(out_grad, collections.Sequence) and not all([
isinstance(g, (ops.Tensor, ops.IndexedSlices)) for g in out_grad
if g is not None
])):
raise TypeError("gradients have to be either all Tensors "
"or all IndexedSlices")
# Aggregate multiple gradients, and convert [] to None.
if out_grad:
if len(out_grad) < 2:
used = "nop"
out_grads[i] = out_grad[0]
elif all([isinstance(g, ops.Tensor) for g in out_grad if g is not None]):
tensor_shape = _AccumulatorShape(out_grad)
if (aggregation_method == AggregationMethod.EXPERIMENTAL_ACCUMULATE_N
and len(out_grad) > 2 and tensor_shape.is_fully_defined()):
# The benefit of using AccumulateN is that its inputs can be combined
# in any order and this can allow the expression to be evaluated with
# a smaller memory footprint. When used with gpu_allocator_retry,
# it is possible to compute a sum of terms which are much larger than
# total GPU memory.
# AccumulateN can currently only be used if we know the shape for
# an accumulator variable. If this is not known, or if we only have
# 2 grads then we fall through to the "tree" case below.
used = "accumulate_n"
out_grads[i] = math_ops.accumulate_n(out_grad)
elif aggregation_method in [
AggregationMethod.EXPERIMENTAL_TREE,
AggregationMethod.EXPERIMENTAL_ACCUMULATE_N
]:
# Aggregate all gradients by doing pairwise sums: this may
# reduce performance, but it can improve memory because the
# gradients can be released earlier.
#
# TODO(vrv): Consider replacing this with a version of
# tf.AddN() that eagerly frees its inputs as soon as they are
# ready, so the order of this tree does not become a problem.
used = "tree"
with ops.name_scope(op.name + "_gradient_sum"):
running_sum = out_grad[0]
for grad in out_grad[1:]:
running_sum = math_ops.add_n([running_sum, grad])
out_grads[i] = running_sum
else:
used = "add_n"
out_grads[i] = _MultiDeviceAddN(out_grad)
logging.vlog(2, " _AggregatedGrads %d x %s using %s",
len(out_grad), tensor_shape, used)
else:
out_grad = math_ops._as_indexed_slices_list(
[g for g in out_grad if g is not None])
out_grad = [_HandleNestedIndexedSlices(x) for x in out_grad]
# Form IndexedSlices out of the concatenated values and
# indices.
out_grads[i] = ops.IndexedSlices(
array_ops.concat_v2([x.values for x in out_grad], 0),
array_ops.concat_v2([x.indices for x in out_grad], 0),
out_grad[0].dense_shape)
else:
out_grads[i] = []
return out_grads
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:97,代码来源:gradients_impl.py
注:本文中的tensorflow.python.ops.math_ops._as_indexed_slices_list函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论