本文整理汇总了Python中tensorflow.python.ops.list_ops.tensor_list_from_tensor函数的典型用法代码示例。如果您正苦于以下问题:Python tensor_list_from_tensor函数的具体用法?Python tensor_list_from_tensor怎么用?Python tensor_list_from_tensor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了tensor_list_from_tensor函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testAddN
def testAddN(self):
l1 = list_ops.tensor_list_from_tensor([1.0, 2.0], element_shape=[])
l2 = list_ops.tensor_list_from_tensor([3.0, 4.0], element_shape=[])
l3 = list_ops.tensor_list_from_tensor([5.0, 6.0], element_shape=[])
result = math_ops.add_n((l1, l2, l3))
result_t = list_ops.tensor_list_stack(result, element_dtype=dtypes.float32)
self.assertAllEqual(self.evaluate(result_t), [9., 12.])
开发者ID:aeverall,项目名称:tensorflow,代码行数:7,代码来源:list_ops_test.py
示例2: testConcat
def testConcat(self):
c = constant_op.constant([1.0, 2.0], dtype=dtypes.float32)
l0 = list_ops.tensor_list_from_tensor(c, element_shape=scalar_shape())
l1 = list_ops.tensor_list_from_tensor([-1.0], element_shape=scalar_shape())
l_batch_0 = array_ops.stack([l0, l1])
l_batch_1 = array_ops.stack([l1, l0])
l_concat_01 = list_ops.tensor_list_concat_lists(
l_batch_0, l_batch_1, element_dtype=dtypes.float32)
l_concat_10 = list_ops.tensor_list_concat_lists(
l_batch_1, l_batch_0, element_dtype=dtypes.float32)
l_concat_00 = list_ops.tensor_list_concat_lists(
l_batch_0, l_batch_0, element_dtype=dtypes.float32)
l_concat_11 = list_ops.tensor_list_concat_lists(
l_batch_1, l_batch_1, element_dtype=dtypes.float32)
expected_00 = [[1.0, 2.0, 1.0, 2.0], [-1.0, -1.0]]
expected_01 = [[1.0, 2.0, -1.0], [-1.0, 1.0, 2.0]]
expected_10 = [[-1.0, 1.0, 2.0], [1.0, 2.0, -1.0]]
expected_11 = [[-1.0, -1.0], [1.0, 2.0, 1.0, 2.0]]
for i, (concat, expected) in enumerate(zip(
[l_concat_00, l_concat_01, l_concat_10, l_concat_11],
[expected_00, expected_01, expected_10, expected_11])):
splitted = array_ops.unstack(concat)
splitted_stacked_ret = self.evaluate(
(list_ops.tensor_list_stack(splitted[0], dtypes.float32),
list_ops.tensor_list_stack(splitted[1], dtypes.float32)))
print("Test concat %d: %s, %s, %s, %s"
% (i, expected[0], splitted_stacked_ret[0],
expected[1], splitted_stacked_ret[1]))
self.assertAllClose(expected[0], splitted_stacked_ret[0])
self.assertAllClose(expected[1], splitted_stacked_ret[1])
# Concatenating mismatched shapes fails.
with self.assertRaises((errors.InvalidArgumentError, ValueError)):
self.evaluate(
list_ops.tensor_list_concat_lists(
l_batch_0,
list_ops.empty_tensor_list(scalar_shape(), dtypes.float32),
element_dtype=dtypes.float32))
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"element shapes are not identical at index 0"):
l_batch_of_vec_tls = array_ops.stack(
[list_ops.tensor_list_from_tensor([[1.0]], element_shape=[1])] * 2)
self.evaluate(
list_ops.tensor_list_concat_lists(l_batch_0, l_batch_of_vec_tls,
element_dtype=dtypes.float32))
with self.assertRaisesRegexp(errors.InvalidArgumentError,
r"input_b\[0\].dtype != element_dtype."):
l_batch_of_int_tls = array_ops.stack(
[list_ops.tensor_list_from_tensor([1], element_shape=scalar_shape())]
* 2)
self.evaluate(
list_ops.tensor_list_concat_lists(l_batch_0, l_batch_of_int_tls,
element_dtype=dtypes.float32))
开发者ID:KiaraStarlab,项目名称:tensorflow,代码行数:58,代码来源:list_ops_test.py
示例3: testSerialize
def testSerialize(self):
# pylint: disable=g-import-not-at-top
try:
import portpicker
except ImportError:
return
with context.graph_mode():
worker_port = portpicker.pick_unused_port()
ps_port = portpicker.pick_unused_port()
cluster_dict = {
"worker": ["localhost:%s" % worker_port],
"ps": ["localhost:%s" % ps_port]
}
cs = server_lib.ClusterSpec(cluster_dict)
worker = server_lib.Server(
cs, job_name="worker", protocol="grpc", task_index=0, start=True)
unused_ps = server_lib.Server(
cs, job_name="ps", protocol="grpc", task_index=0, start=True)
with ops.Graph().as_default(), session.Session(target=worker.target):
with ops.device("/job:worker"):
t = constant_op.constant([[1.0], [2.0]])
l = list_ops.tensor_list_from_tensor(t, element_shape=[1])
with ops.device("/job:ps"):
l_ps = array_ops.identity(l)
l_ps, e = list_ops.tensor_list_pop_back(
l_ps, element_dtype=dtypes.float32)
with ops.device("/job:worker"):
worker_e = array_ops.identity(e)
self.assertAllEqual(worker_e.eval(), [2.0])
开发者ID:andrewharp,项目名称:tensorflow,代码行数:30,代码来源:list_ops_test.py
示例4: testTensorListFromTensor
def testTensorListFromTensor(self):
t = constant_op.constant([1.0, 2.0])
l = list_ops.tensor_list_from_tensor(t, element_shape=[])
l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
self.assertAllEqual(self.evaluate(e), 2.0)
l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
self.assertAllEqual(self.evaluate(e), 1.0)
self.assertAllEqual(self.evaluate(list_ops.tensor_list_length(l)), 0)
开发者ID:aeverall,项目名称:tensorflow,代码行数:8,代码来源:list_ops_test.py
示例5: testGetSetItem
def testGetSetItem(self):
t = constant_op.constant([1.0, 2.0])
l = list_ops.tensor_list_from_tensor(t, element_shape=[])
e0 = list_ops.tensor_list_get_item(l, 0, element_dtype=dtypes.float32)
self.assertAllEqual(self.evaluate(e0), 1.0)
l = list_ops.tensor_list_set_item(l, 0, 3.0)
t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
self.assertAllEqual(self.evaluate(t), [3.0, 2.0])
开发者ID:aeverall,项目名称:tensorflow,代码行数:8,代码来源:list_ops_test.py
示例6: test_get_item_tensor_list
def test_get_item_tensor_list(self):
initial_list = constant_op.constant([[1, 2], [3, 4]])
elem_shape = constant_op.constant([2])
l = list_ops.tensor_list_from_tensor(initial_list, element_shape=elem_shape)
t = slices.get_item(
l, 1, slices.GetItemOpts(element_dtype=initial_list.dtype))
with self.cached_session() as sess:
self.assertAllEqual(self.evaluate(t), [3, 4])
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:9,代码来源:slices_test.py
示例7: tf_tensor_list_new
def tf_tensor_list_new(elements, element_dtype=None, element_shape=None):
"""Overload of new_list that stages a Tensor list creation."""
if tensor_util.is_tensor(elements):
if element_shape is not None:
raise ValueError(
'element shape may not be specified when creating list from tensor')
element_shape = array_ops.shape(elements)[1:]
l = list_ops.tensor_list_from_tensor(elements, element_shape=element_shape)
return l
elements = tuple(ops.convert_to_tensor(el) for el in elements)
all_dtypes = set(el.dtype for el in elements)
if len(all_dtypes) == 1:
inferred_dtype = tuple(all_dtypes)[0]
if element_dtype is not None and element_dtype != inferred_dtype:
raise ValueError(
'incompatible dtype; specified: {}, inferred from {}: {}'.format(
element_dtype, elements, inferred_dtype))
elif all_dtypes:
# Heterogeneous lists are ok.
if element_dtype is not None:
raise ValueError(
'specified dtype {} is inconsistent with that of elements {}'.format(
element_dtype, elements))
inferred_dtype = dtypes.variant
else:
inferred_dtype = dtypes.variant
all_shapes = set(tuple(el.shape.as_list()) for el in elements)
if len(all_shapes) == 1:
inferred_shape = array_ops.shape(elements[0])
if element_shape is not None and element_shape != inferred_shape:
raise ValueError(
'incompatible shape; specified: {}, inferred from {}: {}'.format(
element_shape, elements, inferred_shape))
elif all_shapes:
# Heterogeneous lists are ok.
if element_shape is not None:
raise ValueError(
'specified shape {} is inconsistent with that of elements {}'.format(
element_shape, elements))
inferred_shape = constant_op.constant(-1) # unknown shape, by convention
else:
inferred_shape = constant_op.constant(-1) # unknown shape, by convention
if element_dtype is None:
element_dtype = inferred_dtype
if element_shape is None:
element_shape = inferred_shape
element_shape = ops.convert_to_tensor(element_shape, dtype=dtypes.int32)
l = list_ops.empty_tensor_list(
element_shape=element_shape, element_dtype=element_dtype)
for el in elements:
l = list_ops.tensor_list_push_back(l, el)
return l
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:57,代码来源:data_structures.py
示例8: test_set_item_tensor_list
def test_set_item_tensor_list(self):
initial_list = constant_op.constant([[1, 2], [3, 4]])
elem_shape = constant_op.constant([2])
l = list_ops.tensor_list_from_tensor(initial_list, element_shape=elem_shape)
l = slices.set_item(l, 0, [5, 6])
with self.cached_session() as sess:
t = list_ops.tensor_list_stack(l, element_dtype=initial_list.dtype)
self.assertAllEqual(self.evaluate(t), [[5, 6], [3, 4]])
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:9,代码来源:slices_test.py
示例9: testGetSet
def testGetSet(self):
with self.cached_session(), self.test_scope():
t = constant_op.constant([1.0, 2.0])
l = list_ops.tensor_list_from_tensor(t, element_shape=[])
e0 = list_ops.tensor_list_get_item(l, 0, element_dtype=dtypes.float32)
self.assertAllEqual(e0, 1.0)
l = list_ops.tensor_list_set_item(l, 0, 3.0)
t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
self.assertAllEqual(t, [3.0, 2.0])
开发者ID:jackd,项目名称:tensorflow,代码行数:9,代码来源:tensor_list_ops_test.py
示例10: testStackFromTensorGradients
def testStackFromTensorGradients(self):
with backprop.GradientTape() as tape:
c = constant_op.constant([1.0, 2.0])
tape.watch(c)
l = list_ops.tensor_list_from_tensor(c, element_shape=scalar_shape())
c2 = list_ops.tensor_list_stack(
l, element_dtype=dtypes.float32)
result = c2 * 2.0
self.assertAllEqual(tape.gradient(result, [c])[0], [2.0, 2.0])
开发者ID:andrewharp,项目名称:tensorflow,代码行数:9,代码来源:list_ops_test.py
示例11: unstack
def unstack(self, value, name=None):
"""See TensorArray."""
with ops.name_scope(name, "TensorArrayUnstack", [self._flow, value]):
value = ops.convert_to_tensor(value, name="value")
if self._infer_shape and not context.executing_eagerly():
self._merge_element_shape(value.shape[1:])
flow_out = list_ops.tensor_list_from_tensor(
tensor=value, element_shape=value.shape[1:])
return build_ta_with_new_flow(self, flow_out)
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:9,代码来源:tensor_array_ops.py
示例12: testStackFromTensorGradients
def testStackFromTensorGradients(self):
with backprop.GradientTape() as tape:
c = constant_op.constant([1.0, 2.0])
tape.watch(c)
l = list_ops.tensor_list_from_tensor(c, element_shape=[])
c2 = list_ops.tensor_list_stack(
l, element_dtype=dtypes.float32, num_elements=2)
result = c2 * 2.0
grad = tape.gradient(result, [c])[0]
self.assertAllEqual(self.evaluate(grad), [2.0, 2.0])
开发者ID:aeverall,项目名称:tensorflow,代码行数:10,代码来源:list_ops_test.py
示例13: test_stack_tensor_list
def test_stack_tensor_list(self):
initial_list = constant_op.constant([[1, 2], [3, 4]])
elem_shape = constant_op.constant([2])
l = list_ops.tensor_list_from_tensor(initial_list, element_shape=elem_shape)
opts = data_structures.ListStackOpts(
element_dtype=initial_list.dtype, original_call=None)
with self.test_session() as sess:
t = data_structures.list_stack(l, opts)
self.assertAllEqual(sess.run(t), sess.run(initial_list))
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:11,代码来源:data_structures_test.py
示例14: testListFromTensor
def testListFromTensor(self):
with self.cached_session(), self.test_scope():
t = constant_op.constant([1.0, 2.0])
l = list_ops.tensor_list_from_tensor(t, element_shape=[])
e = list_ops.tensor_list_get_item(l, 0, element_dtype=dtypes.float32)
self.assertAllEqual(e, 1.0)
l, e0 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
self.assertAllEqual(e0, 2.0)
l, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
self.assertAllEqual(e1, 1.0)
self.assertAllEqual(list_ops.tensor_list_length(l), 0)
开发者ID:jackd,项目名称:tensorflow,代码行数:11,代码来源:tensor_list_ops_test.py
示例15: testResourceVariableScatterGather
def testResourceVariableScatterGather(self):
c = constant_op.constant([1.0, 2.0], dtype=dtypes.float32)
l = list_ops.tensor_list_from_tensor(c, element_shape=[])
v = vs.get_variable("var", initializer=[l] * 10, use_resource=True)
v_r_0_stacked = list_ops.tensor_list_stack(v[0], dtypes.float32)
self.evaluate(v.initializer)
self.assertAllEqual([1.0, 2.0], self.evaluate(v_r_0_stacked))
v_r_sparse_stacked = list_ops.tensor_list_stack(
v.sparse_read(0), dtypes.float32)
self.assertAllEqual([1.0, 2.0], self.evaluate(v_r_sparse_stacked))
l_new_0 = list_ops.tensor_list_from_tensor([3.0, 4.0], element_shape=[])
l_new_1 = list_ops.tensor_list_from_tensor([5.0, 6.0], element_shape=[])
updated_v = state_ops.scatter_update(v, [3, 5], [l_new_0, l_new_1])
updated_v_elems = array_ops.unstack(updated_v)
updated_v_stacked = [
list_ops.tensor_list_stack(el, dtypes.float32) for el in updated_v_elems
]
expected = ([[1.0, 2.0]] * 3 + [[3.0, 4.0], [1.0, 2.0], [5.0, 6.0]] +
[[1.0, 2.0]] * 4)
self.assertAllEqual(self.evaluate(updated_v_stacked), expected)
开发者ID:aeverall,项目名称:tensorflow,代码行数:20,代码来源:list_ops_test.py
示例16: testSkipEagerSetItemWithMismatchedShapeFails
def testSkipEagerSetItemWithMismatchedShapeFails(self):
with self.cached_session() as sess:
ph = array_ops.placeholder(dtypes.float32)
c = constant_op.constant([1.0, 2.0])
l = list_ops.tensor_list_from_tensor(c, element_shape=[])
# Set a placeholder with unknown shape to satisfy the shape inference
# at graph building time.
l = list_ops.tensor_list_set_item(l, 0, ph)
l_0 = list_ops.tensor_list_get_item(l, 0, element_dtype=dtypes.float32)
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"incompatible shape"):
sess.run(l_0, {ph: [3.0]})
开发者ID:aeverall,项目名称:tensorflow,代码行数:12,代码来源:list_ops_test.py
示例17: testScatterUpdateVariant
def testScatterUpdateVariant(self):
with context.eager_mode():
v = resource_variable_ops.ResourceVariable([
list_ops.empty_tensor_list(
element_dtype=dtypes.float32, element_shape=[])
])
v.scatter_update(
ops.IndexedSlices(
list_ops.tensor_list_from_tensor([1., 2.], element_shape=[]), 0))
self.assertAllEqual(
list_ops.tensor_list_get_item(v[0], 0, element_dtype=dtypes.float32),
1.)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:12,代码来源:resource_variable_ops_test.py
示例18: unstack
def unstack(self, value, name=None):
"""See TensorArray."""
with ops.name_scope(name, "TensorArrayUnstack", [self._flow, value]):
# TODO(b/129870929): Fix after all callers provide proper init dtype.
value = ops.convert_to_tensor(
value, preferred_dtype=self._dtype, name="value")
_check_dtypes(value, self._dtype)
if self._infer_shape and not context.executing_eagerly():
self._merge_element_shape(value.shape[1:])
flow_out = list_ops.tensor_list_from_tensor(
tensor=value, element_shape=value.shape[1:])
return build_ta_with_new_flow(self, flow_out)
开发者ID:aritratony,项目名称:tensorflow,代码行数:12,代码来源:tensor_array_ops.py
示例19: testPushBackBatch
def testPushBackBatch(self):
c = constant_op.constant([1.0, 2.0], dtype=dtypes.float32)
l0 = list_ops.tensor_list_from_tensor(c, element_shape=[])
l1 = list_ops.tensor_list_from_tensor([-1.0], element_shape=[])
l_batch = array_ops.stack([l0, l1])
l_push = list_ops.tensor_list_push_back_batch(l_batch, [3.0, 4.0])
l_unstack = array_ops.unstack(l_push)
l0_ret = list_ops.tensor_list_stack(l_unstack[0], dtypes.float32)
l1_ret = list_ops.tensor_list_stack(l_unstack[1], dtypes.float32)
self.assertAllClose([1.0, 2.0, 3.0], self.evaluate(l0_ret))
self.assertAllClose([-1.0, 4.0], self.evaluate(l1_ret))
with ops.control_dependencies([l_push]):
l_unstack_orig = array_ops.unstack(l_batch)
l0_orig_ret = list_ops.tensor_list_stack(l_unstack_orig[0],
dtypes.float32)
l1_orig_ret = list_ops.tensor_list_stack(l_unstack_orig[1],
dtypes.float32)
# Check that without aliasing, push_back_batch still works; and
# that it doesn't modify the input.
l0_r_v, l1_r_v, l0_orig_v, l1_orig_v = self.evaluate(
(l0_ret, l1_ret, l0_orig_ret, l1_orig_ret))
self.assertAllClose([1.0, 2.0, 3.0], l0_r_v)
self.assertAllClose([-1.0, 4.0], l1_r_v)
self.assertAllClose([1.0, 2.0], l0_orig_v)
self.assertAllClose([-1.0], l1_orig_v)
# Pushing back mismatched shapes fails.
with self.assertRaises((errors.InvalidArgumentError, ValueError)):
self.evaluate(list_ops.tensor_list_push_back_batch(l_batch, []))
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"incompatible shape to a list at index 0"):
self.evaluate(
list_ops.tensor_list_push_back_batch(l_batch, [[3.0], [4.0]]))
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"Invalid data type at index 0"):
self.evaluate(list_ops.tensor_list_push_back_batch(l_batch, [3, 4]))
开发者ID:aeverall,项目名称:tensorflow,代码行数:40,代码来源:list_ops_test.py
示例20: testSerializeListWithUnknownRank
def testSerializeListWithUnknownRank(self):
worker = test_util.create_local_cluster(num_workers=1, num_ps=1)[0][0]
with ops.Graph().as_default(), session.Session(target=worker.target):
with ops.device("/job:worker"):
t = constant_op.constant([[1.0], [2.0]])
l = list_ops.tensor_list_from_tensor(t, element_shape=None)
with ops.device("/job:ps"):
l_ps = array_ops.identity(l)
element_shape = list_ops.tensor_list_element_shape(
l_ps, shape_type=dtypes.int32)
with ops.device("/job:worker"):
element_shape = array_ops.identity(element_shape)
self.assertEqual(self.evaluate(element_shape), -1)
开发者ID:aeverall,项目名称:tensorflow,代码行数:13,代码来源:list_ops_test.py
注:本文中的tensorflow.python.ops.list_ops.tensor_list_from_tensor函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论