本文整理汇总了Python中tensorflow.python.ops.init_ops.zeros_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python zeros_initializer函数的具体用法?Python zeros_initializer怎么用?Python zeros_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了zeros_initializer函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
trainable=True,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:28,代码来源:normalization.py
示例2: testKernelStateList
def testKernelStateList(self):
"""Test that transition kernel works with list input to `state`."""
num_chains = 2
loc_one = variable_scope.get_variable(
"loc_one", [num_chains],
initializer=init_ops.zeros_initializer())
loc_two = variable_scope.get_variable(
"loc_two", [num_chains], initializer=init_ops.zeros_initializer())
def target_log_prob_fn(loc_one, loc_two):
loc = array_ops.stack([loc_one, loc_two])
log_prob = mvn_tril_lib.MultivariateNormalTriL(
loc=constant_op.constant([0., 0.]),
scale_tril=constant_op.constant([[0.1, 0.1], [0.0, 0.1]])).log_prob(
loc)
return math_ops.reduce_sum(log_prob, 0)
def proposal_fn(loc_one, loc_two):
loc_one_proposal = mh.proposal_normal(scale=0.05)
loc_two_proposal = mh.proposal_normal(scale=0.05)
loc_one_sample, _ = loc_one_proposal(loc_one)
loc_two_sample, _ = loc_two_proposal(loc_two)
return [loc_one_sample, loc_two_sample], None
new_state, _ = mh.kernel(
target_log_prob_fn=target_log_prob_fn,
proposal_fn=proposal_fn,
current_state=[loc_one, loc_two],
seed=12415)
loc_one_update = loc_one.assign(new_state[0])
loc_two_update = loc_two.assign(new_state[1])
init = variables.initialize_all_variables()
with self.test_session() as sess:
sess.run(init)
loc_one_samples = []
loc_two_samples = []
for _ in range(10000):
loc_one_sample, loc_two_sample = sess.run(
[loc_one_update, loc_two_update])
loc_one_samples.append(loc_one_sample)
loc_two_samples.append(loc_two_sample)
loc_one_samples = np.array(loc_one_samples)
loc_two_samples = np.array(loc_two_samples)
loc_one_samples = loc_one_samples[1000:] # drop samples for burn-in
loc_two_samples = loc_two_samples[1000:] # drop samples for burn-in
self.assertAllClose(np.mean(loc_one_samples, 0),
np.array([0.] * num_chains),
rtol=1e-5, atol=1e-1)
self.assertAllClose(np.mean(loc_two_samples, 0),
np.array([0.] * num_chains),
rtol=1e-5, atol=1e-1)
self.assertAllClose(np.std(loc_one_samples, 0),
np.array([0.1] * num_chains),
rtol=1e-5, atol=1e-1)
self.assertAllClose(np.std(loc_two_samples, 0),
np.array([0.1] * num_chains),
rtol=1e-5, atol=1e-1)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:60,代码来源:metropolis_hastings_test.py
示例3: testAddWeight
def testAddWeight(self):
layer = base_layers.Layer(name='my_layer')
# Test basic variable creation.
variable = layer.add_variable(
'my_var', [2, 2], initializer=init_ops.zeros_initializer())
self.assertEqual(variable.name, 'my_layer/my_var:0')
self.assertListEqual(layer.variables, [variable])
self.assertListEqual(layer.trainable_variables, [variable])
self.assertListEqual(layer.non_trainable_variables, [])
self.assertListEqual(layer.variables,
ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES))
# Test non-trainable variable creation.
# layer.add_variable should work even outside `build` and `call`.
variable_2 = layer.add_variable(
'non_trainable_var', [2, 2],
initializer=init_ops.zeros_initializer(),
trainable=False)
self.assertListEqual(layer.variables, [variable, variable_2])
self.assertListEqual(layer.trainable_variables, [variable])
self.assertListEqual(layer.non_trainable_variables, [variable_2])
self.assertEqual(
len(ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)), 1)
if context.in_graph_mode():
# regularizers only supported in GRAPH mode.
regularizer = lambda x: math_ops.reduce_sum(x) * 1e-3
variable = layer.add_variable(
'reg_var', [2, 2],
initializer=init_ops.zeros_initializer(),
regularizer=regularizer)
self.assertEqual(len(layer.losses), 1)
开发者ID:keveman,项目名称:tensorflow,代码行数:33,代码来源:base_test.py
示例4: _auc_hist_accumulate
def _auc_hist_accumulate(hist_true, hist_false, nbins, collections):
"""Accumulate histograms in new variables."""
with variable_scope.variable_scope(
None, 'hist_accumulate', [hist_true, hist_false]):
# Holds running total histogram of scores for records labeled True.
hist_true_acc = variable_scope.get_variable(
'hist_true_acc',
initializer=init_ops.zeros_initializer(
[nbins],
dtype=hist_true.dtype),
collections=collections,
trainable=False)
# Holds running total histogram of scores for records labeled False.
hist_false_acc = variable_scope.get_variable(
'hist_false_acc',
initializer=init_ops.zeros_initializer(
[nbins],
dtype=hist_false.dtype),
collections=collections,
trainable=False)
update_op = control_flow_ops.group(
hist_true_acc.assign_add(hist_true),
hist_false_acc.assign_add(hist_false),
name='update_op')
return hist_true_acc, hist_false_acc, update_op
开发者ID:BloodD,项目名称:tensorflow,代码行数:27,代码来源:histogram_ops.py
示例5: weighted_moving_average
def weighted_moving_average(value,
decay,
weight,
truediv=True,
collections=None,
name=None):
"""Compute the weighted moving average of `value`.
Conceptually, the weighted moving average is:
`moving_average(value * weight) / moving_average(weight)`,
where a moving average updates by the rule
`new_value = decay * old_value + (1 - decay) * update`
Internally, this Op keeps moving average variables of both `value * weight`
and `weight`.
Args:
value: A numeric `Tensor`.
decay: A float `Tensor` or float value. The moving average decay.
weight: `Tensor` that keeps the current value of a weight.
Shape should be able to multiply `value`.
truediv: Boolean, if `True`, dividing by `moving_average(weight)` is
floating point division. If `False`, use division implied by dtypes.
collections: List of graph collections keys to add the internal variables
`value * weight` and `weight` to.
Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
name: Optional name of the returned operation.
Defaults to "WeightedMovingAvg".
Returns:
An Operation that updates and returns the weighted moving average.
"""
# Unlike assign_moving_average, the weighted moving average doesn't modify
# user-visible variables. It is the ratio of two internal variables, which are
# moving averages of the updates. Thus, the signature of this function is
# quite different than assign_moving_average.
if collections is None:
collections = [ops.GraphKeys.GLOBAL_VARIABLES]
with variable_scope.variable_scope(name, "WeightedMovingAvg",
[value, weight, decay]) as scope:
value_x_weight_var = variable_scope.get_variable(
"value_x_weight",
initializer=init_ops.zeros_initializer(value.get_shape(),
dtype=value.dtype),
trainable=False,
collections=collections)
weight_var = variable_scope.get_variable(
"weight",
initializer=init_ops.zeros_initializer(weight.get_shape(),
dtype=weight.dtype),
trainable=False,
collections=collections)
numerator = assign_moving_average(
value_x_weight_var, value * weight, decay, zero_debias=False)
denominator = assign_moving_average(
weight_var, weight, decay, zero_debias=False)
if truediv:
return math_ops.truediv(numerator, denominator, name=scope.name)
else:
return math_ops.div(numerator, denominator, name=scope.name)
开发者ID:allesover,项目名称:tensorflow,代码行数:60,代码来源:moving_averages.py
示例6: linear_module
def linear_module(x, output_size):
w = variable_scope.get_variable(
"w", shape=[x.get_shape()[1], output_size],
initializer=init_ops.zeros_initializer())
b = variable_scope.get_variable(
"b", shape=[output_size],
initializer=init_ops.zeros_initializer())
return (math_ops.matmul(x, w) + b), w
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:8,代码来源:template_test.py
示例7: _templated
def _templated():
v = variable_scope.get_variable(
"v", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
v2 = variable_scope.get_variable(
"v2", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
return v, v + 1., v2
开发者ID:jackd,项目名称:tensorflow,代码行数:8,代码来源:checkpointable_utils_test.py
示例8: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
trainable=True,
virtual_batch_size=None,
adjustment=None,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
if isinstance(axis, list):
self.axis = axis[:]
else:
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
self.beta_constraint = beta_constraint
self.gamma_constraint = gamma_constraint
self.renorm = renorm
self.virtual_batch_size = virtual_batch_size
self.adjustment = adjustment
if fused is None:
fused = True
self.fused = fused
self._bessels_correction_test_only = True
if renorm:
renorm_clipping = renorm_clipping or {}
keys = ['rmax', 'rmin', 'dmax']
if set(renorm_clipping) - set(keys):
raise ValueError('renorm_clipping %s contains keys not in %s' %
(renorm_clipping, keys))
self.renorm_clipping = renorm_clipping
self.renorm_momentum = renorm_momentum
开发者ID:dansbecker,项目名称:tensorflow,代码行数:58,代码来源:normalization.py
示例9: testAddWeight
def testAddWeight(self):
layer = base_layers.Layer(name='my_layer')
# Test basic variable creation.
variable = layer.add_variable(
'my_var', [2, 2], initializer=init_ops.zeros_initializer())
self.assertEqual(variable.name, 'my_layer/my_var:0')
self.assertEqual(layer.variables, [variable])
self.assertEqual(layer.trainable_variables, [variable])
self.assertEqual(layer.non_trainable_variables, [])
if not context.executing_eagerly():
self.assertEqual(
layer.variables,
ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES))
# Test non-trainable variable creation.
# layer.add_variable should work even outside `build` and `call`.
variable_2 = layer.add_variable(
'non_trainable_var', [2, 2],
initializer=init_ops.zeros_initializer(),
trainable=False)
self.assertEqual(layer.variables, [variable, variable_2])
self.assertEqual(layer.trainable_variables, [variable])
self.assertEqual(layer.non_trainable_variables, [variable_2])
if not context.executing_eagerly():
self.assertEqual(
len(ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)), 1)
regularizer = lambda x: math_ops.reduce_sum(x) * 1e-3
_ = layer.add_variable(
'reg_var', [2, 2],
initializer=init_ops.zeros_initializer(),
regularizer=regularizer)
self.assertEqual(len(layer.losses), 1)
added_variable = [False]
# Test that sync `ON_READ` variables are defaulted to be non-trainable.
variable_3 = layer.add_variable(
'sync_on_read_var', [2, 2],
initializer=init_ops.zeros_initializer(),
synchronization=variable_scope.VariableSynchronization.ON_READ,
aggregation=variable_scope.VariableAggregation.SUM)
self.assertEqual(layer.non_trainable_variables, [variable_2, variable_3])
@def_function.function
def function_adds_weight():
if not added_variable[0]:
layer.add_variable(
'reg_var_from_function', [2, 2],
initializer=init_ops.zeros_initializer(),
regularizer=regularizer)
added_variable[0] = True
function_adds_weight()
self.assertEqual(len(layer.losses), 2)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:57,代码来源:base_test.py
示例10: testLSTMLayer
def testLSTMLayer(self):
# Run with all-0 weights, no padding.
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 0., 0., 0.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 0., 1., 0.)
self.assertAllClose(o, [[[.25]] * self._batch_size,
[[.125]] * self._batch_size,
[[.0625]] * self._batch_size])
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 1., 0., 0.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 1., 1., 0.)
self.assertAllClose(o, [[[.25]] * self._batch_size,
[[.125]] * self._batch_size,
[[.0625]] * self._batch_size])
# Run with all-1 weights, no padding.
weight1 = 1.
for m_init in [0., 1.]:
for c_init in [0., 1.]:
o = self._RunLSTMLayer('ones',
init_ops.ones_initializer(), m_init, c_init, 0.)
m0 = self._NextM(self._inputs, weight1, m_init, c_init)
c0 = self._NextC(self._inputs, weight1, m_init, c_init)
self.assertAllClose(o[0], m0)
m1 = self._NextM(self._inputs, weight1, m0, c0)
c1 = self._NextC(self._inputs, weight1, m0, c0)
self.assertAllClose(o[1], m1)
m2 = self._NextM(self._inputs, weight1, m1, c1)
self.assertAllClose(o[2], m2)
# Run with random weights.
for weight in np.random.rand(3):
weight_tf = constant_op.constant(weight, dtypes.float32)
random_weight = lambda shape, w=weight_tf: array_ops.fill(shape, w)
# No padding.
for m_init in [0., 1.]:
for c_init in [0., 1.]:
o = self._RunLSTMLayer('random', random_weight, m_init, c_init, 0.)
m0 = self._NextM(self._inputs, weight, m_init, c_init)
c0 = self._NextC(self._inputs, weight, m_init, c_init)
self.assertAllClose(o[0], m0)
m1 = self._NextM(self._inputs, weight, m0, c0)
c1 = self._NextC(self._inputs, weight, m0, c0)
self.assertAllClose(o[1], m1)
m2 = self._NextM(self._inputs, weight, m1, c1)
self.assertAllClose(o[2], m2)
# Set padding.
o = self._RunLSTMLayer('random', random_weight, 0., 0., 1.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('random', random_weight, 0., 1., 1.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('random', random_weight, 1., 0., 1.)
self.assertAllClose(o, [[[1.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('random', random_weight, 1., 1., 1.)
self.assertAllClose(o, [[[1.]] * self._batch_size] * 3)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:57,代码来源:lstm_test.py
示例11: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
trainable=True,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
self.beta_constraint = beta_constraint
self.gamma_constraint = gamma_constraint
self.renorm = renorm
# This environment variable is only used during the testing period of fused
# batch norm and will be removed after that.
if fused is None:
fused = _FUSED_DEFAULT
self.fused = fused
self._bessels_correction_test_only = True
if renorm:
renorm_clipping = renorm_clipping or {}
keys = ['rmax', 'rmin', 'dmax']
if set(renorm_clipping) - set(keys):
raise ValueError('renorm_clipping %s contains keys not in %s' %
(renorm_clipping, keys))
self.renorm_clipping = renorm_clipping
self.renorm_momentum = renorm_momentum
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:52,代码来源:normalization.py
示例12: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=False,
trainable=True,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
self.renorm = renorm
self.fused = fused
if self.fused and renorm:
raise ValueError(
'Batch renorm is currently not supported with fused batch norm.')
if self.fused and (beta_regularizer is not None or
gamma_regularizer is not None):
raise ValueError('Regularizers are not currently '
'supported for fused batch norm.')
if renorm:
renorm_clipping = renorm_clipping or {}
keys = ['rmax', 'rmin', 'dmax']
if set(renorm_clipping) - set(keys):
raise ValueError('renorm_clipping %s contains keys not in %s' %
(renorm_clipping, keys))
self.renorm_clipping = renorm_clipping
self.renorm_momentum = renorm_momentum
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:49,代码来源:normalization.py
示例13: create_variables_and_ops
def create_variables_and_ops(self, table, variable_name, num_hosts,
table_config, table_variables,
load_parameters_ops, retrieve_parameters_ops):
optimizer_name = 'Adam'
m_initializer = init_ops.zeros_initializer()
m_variables = _create_partitioned_variables(
name='%s/%s/m' % (variable_name, optimizer_name),
num_hosts=num_hosts,
vocabulary_size=table_config.vocabulary_size,
embedding_dimension=table_config.dimension,
collections=[ops.GraphKeys.GLOBAL_VARIABLES],
initializer=m_initializer)
v_initializer = init_ops.zeros_initializer()
v_variables = _create_partitioned_variables(
name='%s/%s/v' % (variable_name, optimizer_name),
num_hosts=num_hosts,
vocabulary_size=table_config.vocabulary_size,
embedding_dimension=table_config.dimension,
collections=[ops.GraphKeys.GLOBAL_VARIABLES],
initializer=v_initializer)
self._table_to_m_variables_dict[table] = m_variables
self._table_to_v_variables_dict[table] = v_variables
for host_id, table_variable, m_variable, v_variable in (zip(
range(num_hosts), table_variables,
m_variables, v_variables)):
with ops.colocate_with(table_variable):
load_parameters_op = (
tpu_ops.load_tpu_embedding_adam_parameters(
parameters=table_variable,
momenta=m_variable,
velocities=v_variable,
table_name=table,
num_shards=num_hosts,
shard_id=host_id))
retrieved_table, retrieved_m, retrieved_v = (
tpu_ops.retrieve_tpu_embedding_adam_parameters(
table_name=table,
num_shards=num_hosts,
shard_id=host_id))
retrieve_parameters_op = control_flow_ops.group(
state_ops.assign(table_variable, retrieved_table),
state_ops.assign(m_variable, retrieved_m),
state_ops.assign(v_variable, retrieved_v))
load_parameters_ops.append(load_parameters_op)
retrieve_parameters_ops.append(retrieve_parameters_op)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:48,代码来源:tpu_embedding.py
示例14: __init__
def __init__(self, value, decay,
truediv=True,
collections=None,
reduction_indices=None,
name=None):
self.value = value
self.reduction_indices = reduction_indices or [0]
eps = 1e-8
if truediv:
div = math_ops.truediv
else:
div = math_ops.div
if collections is None:
collections = [ops.GraphKeys.VARIABLES]
value_shape = value.get_shape().as_list()
shape = []
for dim in range(len(value_shape)):
if dim in self.reduction_indices:
shape.append(1)
else:
shape.append(value_shape[dim])
with variable_scope.variable_op_scope(
[value, decay], name, "MomentTracker") as scope:
mean_x_weight_var = variable_scope.get_variable("mean_x_weight", trainable=False, collections=collections,
initializer=init_ops.zeros_initializer(shape, dtype=value.dtype))
variance_x_weight_var = variable_scope.get_variable("variance_x_weight", trainable=False,
collections=collections, initializer=init_ops.zeros_initializer(shape, dtype=value.dtype))
weight_var = variable_scope.get_variable("weight", trainable=False, collections=collections,
initializer=init_ops.zeros_initializer([1], dtype=tf.float32))
self.tracked_mean = div(mean_x_weight_var, weight_var + eps)
self.tracked_variance = div(variance_x_weight_var, weight_var + eps)
self.batch_mean, self.batch_variance = tf.nn.moments(self.value, axes=self.reduction_indices,
shift=self.tracked_mean, keep_dims=True)
mean_numerator = assign_moving_average(mean_x_weight_var, self.batch_mean, decay)
variance_numerator = assign_moving_average(variance_x_weight_var, self.batch_variance, decay)
denominator = assign_moving_average(weight_var, 1.0, decay)
self.update_mean = div(mean_numerator, denominator + eps, name=scope.name)
self.update_variance = div(variance_numerator, denominator + eps, name=scope.name)
开发者ID:NoahDStein,项目名称:NeuralNetSandbox,代码行数:48,代码来源:moment_tracker.py
示例15: create_global_step
def create_global_step(graph=None):
"""Create global step tensor in graph.
Args:
graph: The graph in which to create the global step. If missing, use default
graph.
Returns:
Global step tensor.
Raises:
ValueError: if global step key is already defined.
"""
graph = ops.get_default_graph() if graph is None else graph
if get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
collections = [ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.GLOBAL_STEP]
return variable(
ops.GraphKeys.GLOBAL_STEP,
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=collections)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:26,代码来源:variables.py
示例16: variable_scoped_function_no_return_value
def variable_scoped_function_no_return_value(trainable=True):
# defun cannot compile functions that return non-Tensor objects
_ = variable_scope.get_variable(
"dummy",
shape=[1],
trainable=trainable,
initializer=init_ops.zeros_initializer())
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:7,代码来源:template_test.py
示例17: model_fn
def model_fn(features, labels, mode):
_ = labels
step = training.get_global_step()
w = variable_scope.get_variable(
'w',
shape=[],
initializer=init_ops.zeros_initializer(),
dtype=dtypes.int64)
if estimator_lib.ModeKeys.TRAIN == mode:
# to consume features, we have control dependency
with ops.control_dependencies([features]):
step_inc = state_ops.assign_add(training.get_global_step(), 1)
with ops.control_dependencies([step_inc]):
assign_w_to_step_plus_2 = w.assign(step + 2)
return estimator_lib.EstimatorSpec(
mode,
loss=constant_op.constant(3.),
train_op=assign_w_to_step_plus_2)
if estimator_lib.ModeKeys.EVAL == mode:
# to consume features, we have control dependency
with ops.control_dependencies([features]):
loss = constant_op.constant(5.)
return estimator_lib.EstimatorSpec(
mode,
loss=loss,
# w is constant in each step, so the mean.
# w = 0 if step==0 else step+2
eval_metric_ops={'mean_of_const': metrics_lib.mean(w)})
开发者ID:ChristinaEricka,项目名称:tensorflow,代码行数:28,代码来源:hooks_test.py
示例18: apply_gradients
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
gradients = []
# Number of stale gradients.
stale_counter = variable_scope.get_variable(
"stale_counter", [],
initializer=init_ops.zeros_initializer(),
trainable=False)
def _AcceptGradientOp():
with ops.control_dependencies(
[self._opt.apply_gradients(
grads_and_vars, global_step=global_step, name=name)]):
return gen_array_ops.identity(0.0)
def _DropGradientOp():
return gen_array_ops.identity(1.0)
for grad_and_var in grads_and_vars:
grad = grad_and_var[0]
if isinstance(grad, ops.Tensor):
gradients.append(grad)
else:
gradients.append(grad.op)
with ops.control_dependencies(gradients), ops.colocate_with(global_step):
staleness = gen_array_ops.reshape(
global_step - self._local_step, shape=())
conditional_update = stale_counter.assign_add(control_flow_ops.cond(
gen_math_ops.less_equal(staleness, self._staleness),
_AcceptGradientOp, _DropGradientOp))
summary.scalar(
"Gradient staleness percentage",
stale_counter / (math_ops.cast(global_step + 1, dtypes.float32)))
return conditional_update
开发者ID:sandeepgupta2k4,项目名称:tensorflow,代码行数:35,代码来源:drop_stale_gradient_optimizer.py
示例19: testInitialValueComesFromCheckpoint
def testInitialValueComesFromCheckpoint(self):
checkpoint_dir = self.get_temp_dir()
with self.test_session() as session:
v1, _, _, _ = _create_checkpoints(session, checkpoint_dir)
# New graph and session.
with ops.Graph().as_default() as g:
with self.test_session(graph=g) as session:
with variable_scope.variable_scope(
"some_scope", initializer=init_ops.zeros_initializer()):
my1 = variable_scope.get_variable("my1", [1, 10])
# At this point, my1.initialized_value() will add ops that reference
# the zeros initializer of my1.
before = variables.Variable(my1.initialized_value(), name="before")
checkpoint_utils.init_from_checkpoint(checkpoint_dir, {"var1": my1})
# At this point, my1.initialized_value() will add ops that reference
# the newly set initializer of my1.
after = variables.Variable(my1.initialized_value(), name="after")
session.run(variables.global_variables_initializer())
self.assertAllEqual(session.run(my1), v1)
self.assertAllEqual(session.run(my1.initialized_value()), v1)
self.assertAllClose(session.run(before), [[0.0] * 10])
self.assertAllClose(session.run(after), v1)
with self.assertRaises(AssertionError):
self.assertAllClose(session.run(before), session.run(after))
开发者ID:QiangCai,项目名称:tensorflow,代码行数:29,代码来源:checkpoint_utils_test.py
示例20: testInitialValueComesFromCheckpoint
def testInitialValueComesFromCheckpoint(self):
checkpoint_dir = self.get_temp_dir()
with self.test_session() as session:
v1, _, _, _ = _create_checkpoints(session, checkpoint_dir)
# New graph and session.
with ops.Graph().as_default() as g:
with self.test_session(graph=g) as session:
with variable_scope.variable_scope(
"some_scope", initializer=init_ops.zeros_initializer()):
my1 = variable_scope.get_variable("my1", [1, 10])
before = my1.initialized_value()
checkpoint_utils.init_from_checkpoint(checkpoint_dir, {"var1": my1})
after = my1.initialized_value()
self.assertAllEqual(session.run(before), [[0.0] * 10])
self.assertAllEqual(session.run(after), v1)
session.run(variables.global_variables_initializer())
self.assertAllEqual(session.run(my1), v1)
self.assertAllEqual(session.run(my1.initialized_value()), v1)
self.assertAllClose(session.run(before), v1)
self.assertAllClose(session.run(after), v1)
with self.assertRaises(AssertionError):
self.assertAllClose(v1, [[0.0] * 10])
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:29,代码来源:checkpoint_utils_test.py
注:本文中的tensorflow.python.ops.init_ops.zeros_initializer函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论