本文整理汇总了Python中tensorflow.python.ops.init_ops.ones_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python ones_initializer函数的具体用法?Python ones_initializer怎么用?Python ones_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ones_initializer函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
trainable=True,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:28,代码来源:normalization.py
示例2: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
trainable=True,
virtual_batch_size=None,
adjustment=None,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
if isinstance(axis, list):
self.axis = axis[:]
else:
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
self.beta_constraint = beta_constraint
self.gamma_constraint = gamma_constraint
self.renorm = renorm
self.virtual_batch_size = virtual_batch_size
self.adjustment = adjustment
if fused is None:
fused = True
self.fused = fused
self._bessels_correction_test_only = True
if renorm:
renorm_clipping = renorm_clipping or {}
keys = ['rmax', 'rmin', 'dmax']
if set(renorm_clipping) - set(keys):
raise ValueError('renorm_clipping %s contains keys not in %s' %
(renorm_clipping, keys))
self.renorm_clipping = renorm_clipping
self.renorm_momentum = renorm_momentum
开发者ID:dansbecker,项目名称:tensorflow,代码行数:58,代码来源:normalization.py
示例3: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
trainable=True,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
self.beta_constraint = beta_constraint
self.gamma_constraint = gamma_constraint
self.renorm = renorm
# This environment variable is only used during the testing period of fused
# batch norm and will be removed after that.
if fused is None:
fused = _FUSED_DEFAULT
self.fused = fused
self._bessels_correction_test_only = True
if renorm:
renorm_clipping = renorm_clipping or {}
keys = ['rmax', 'rmin', 'dmax']
if set(renorm_clipping) - set(keys):
raise ValueError('renorm_clipping %s contains keys not in %s' %
(renorm_clipping, keys))
self.renorm_clipping = renorm_clipping
self.renorm_momentum = renorm_momentum
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:52,代码来源:normalization.py
示例4: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=False,
trainable=True,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
name=name, trainable=trainable, **kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = beta_initializer
self.gamma_initializer = gamma_initializer
self.moving_mean_initializer = moving_mean_initializer
self.moving_variance_initializer = moving_variance_initializer
self.beta_regularizer = beta_regularizer
self.gamma_regularizer = gamma_regularizer
self.renorm = renorm
self.fused = fused
if self.fused and renorm:
raise ValueError(
'Batch renorm is currently not supported with fused batch norm.')
if self.fused and (beta_regularizer is not None or
gamma_regularizer is not None):
raise ValueError('Regularizers are not currently '
'supported for fused batch norm.')
if renorm:
renorm_clipping = renorm_clipping or {}
keys = ['rmax', 'rmin', 'dmax']
if set(renorm_clipping) - set(keys):
raise ValueError('renorm_clipping %s contains keys not in %s' %
(renorm_clipping, keys))
self.renorm_clipping = renorm_clipping
self.renorm_momentum = renorm_momentum
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:49,代码来源:normalization.py
示例5: testVariableCreationInALoop
def testVariableCreationInALoop(self):
"""Tests the variable created inside a loop can be used outside the loop."""
with self.test_session():
with variable_scope.variable_scope("ascope") as scope:
def Body(i, _):
var_x = variable_scope.get_variable(
"x",
shape=[2],
initializer=init_ops.ones_initializer(),
partitioner=partitioned_variables.variable_axis_size_partitioner(
4))
return (i + 1, var_x.as_tensor())
cond = lambda i, _: i < 2
_, x = control_flow_ops.while_loop(
cond, Body, (0, constant_op.constant([7, 8], dtypes.float32)))
variables.global_variables_initializer().run()
self.assertAllClose([1.0, 1.0], x.eval())
scope.reuse_variables()
var_x = variable_scope.get_variable(
"x",
shape=[2],
initializer=init_ops.ones_initializer(),
partitioner=partitioned_variables.variable_axis_size_partitioner(4))
self.assertAllClose([1.0, 1.0], var_x.as_tensor().eval())
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:27,代码来源:partitioned_variables_test.py
示例6: Foo
def Foo(inputs):
var = variable_scope.get_variable(
"var",
shape=[10],
dtype=dtypes.float32,
initializer=init_ops.ones_initializer())
return inputs + var
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:function_test.py
示例7: testControlDepsNone
def testControlDepsNone(self):
with self.test_session() as session:
c = constant_op.constant(1.0)
with ops.control_dependencies([c]):
# d get the control dependency.
d = constant_op.constant(2.0)
# Partitioned variables do not.
var_x = variable_scope.get_variable(
"x",
shape=[2],
initializer=init_ops.ones_initializer(),
partitioner=partitioned_variables.variable_axis_size_partitioner(4))
ops_before_read = session.graph.get_operations()
var_x.as_tensor() # Caches the ops for subsequent reads.
reading_ops = [
op for op in session.graph.get_operations()
if op not in ops_before_read
]
self.assertEqual([c.op], d.op.control_inputs)
# Tests that no control dependencies are added to reading a partitioned
# variable which is similar to reading a variable.
for op in reading_ops:
self.assertEqual([], op.control_inputs)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:25,代码来源:partitioned_variables_test.py
示例8: testEagerExecution
def testEagerExecution(self):
with context.eager_mode():
container = variable_scope.EagerVariableStore()
x = constant_op.constant([[2.0]])
with container.as_default():
y = core_layers.dense(
x, 1, name='my_dense',
kernel_initializer=init_ops.ones_initializer())
self.assertAllEqual(y, [[2.0]])
self.assertEqual(len(container.variables()), 2)
# Recreate the layer to test reuse.
with container.as_default():
core_layers.dense(
x, 1, name='my_dense',
kernel_initializer=init_ops.ones_initializer())
self.assertEqual(len(container.variables()), 2)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:16,代码来源:core_test.py
示例9: testOnesInitializer
def testOnesInitializer(self):
with self.test_session(use_gpu=True):
shape = [2, 3]
x = variable_scope.get_variable(
"x", shape=shape, initializer=init_ops.ones_initializer())
x.initializer.run()
self.assertAllEqual(x.eval(), np.ones(shape))
开发者ID:HughKu,项目名称:tensorflow,代码行数:7,代码来源:init_ops_test.py
示例10: build
def build(self, inputs_shape):
# Call the build method of the parent class.
super(MaskedBasicLSTMCell, self).build(inputs_shape)
self.built = False
input_depth = inputs_shape[1].value
h_depth = self._num_units
self._mask = self.add_variable(
name="mask",
shape=[input_depth + h_depth, 4 * h_depth],
initializer=init_ops.ones_initializer(),
trainable=False,
dtype=self.dtype)
self._threshold = self.add_variable(
name="threshold",
shape=[],
initializer=init_ops.zeros_initializer(),
trainable=False,
dtype=self.dtype)
# Add masked_weights in the weights namescope so as to make it easier
# for the quantization library to add quant ops.
self._masked_kernel = math_ops.multiply(self._mask, self._kernel,
core_layers.MASKED_WEIGHT_NAME)
if self._mask not in ops.get_collection_ref(core_layers.MASK_COLLECTION):
ops.add_to_collection(core_layers.MASK_COLLECTION, self._mask)
ops.add_to_collection(core_layers.MASKED_WEIGHT_COLLECTION,
self._masked_kernel)
ops.add_to_collection(core_layers.THRESHOLD_COLLECTION, self._threshold)
ops.add_to_collection(core_layers.WEIGHT_COLLECTION, self._kernel)
self.built = True
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:32,代码来源:rnn_cells.py
示例11: Body
def Body(i, _):
var_x = variable_scope.get_variable(
"x",
shape=[2],
initializer=init_ops.ones_initializer(),
partitioner=partitioned_variables.variable_axis_size_partitioner(
4))
return (i + 1, var_x.as_tensor())
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:8,代码来源:partitioned_variables_test.py
示例12: __init__
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
trainable=True,
virtual_batch_size=None,
adjustment=None,
name=None,
**kwargs):
super(BatchNormalization, self).__init__(
axis=axis,
momentum=momentum,
epsilon=epsilon,
center=center,
scale=scale,
beta_initializer=beta_initializer,
gamma_initializer=gamma_initializer,
moving_mean_initializer=moving_mean_initializer,
moving_variance_initializer=moving_variance_initializer,
beta_regularizer=beta_regularizer,
gamma_regularizer=gamma_regularizer,
beta_constraint=beta_constraint,
gamma_constraint=gamma_constraint,
renorm=renorm,
renorm_clipping=renorm_clipping,
renorm_momentum=renorm_momentum,
fused=fused,
trainable=trainable,
virtual_batch_size=virtual_batch_size,
adjustment=adjustment,
name=name,
**kwargs)
开发者ID:aritratony,项目名称:tensorflow,代码行数:46,代码来源:normalization.py
示例13: testAddVariable
def testAddVariable(self):
obj = NonLayerCheckpointable()
with self.assertRaisesRegexp(ValueError, "do not specify shape"):
checkpointable_utils.add_variable(
obj, name="shape_specified_twice", shape=[], initializer=1)
constant_initializer = checkpointable_utils.add_variable(
obj, name="constant_initializer", initializer=1)
with variable_scope.variable_scope("some_variable_scope"):
ones_initializer = checkpointable_utils.add_variable(
obj,
name="ones_initializer",
shape=[2],
initializer=init_ops.ones_initializer(dtype=dtypes.float32))
bare_initializer = checkpointable_utils.add_variable(
obj,
name="bare_initializer",
shape=[2, 2],
dtype=dtypes.float64,
initializer=init_ops.zeros_initializer)
# Even in graph mode, there are no naming conflicts between objects, only
# naming conflicts within an object.
other_duplicate = resource_variable_ops.ResourceVariable(
name="duplicate", initial_value=1.)
duplicate = checkpointable_utils.add_variable(
obj, name="duplicate", shape=[])
with self.assertRaisesRegexp(ValueError, "'duplicate' already exists"):
checkpointable_utils.add_variable(obj, name="duplicate", shape=[])
if context.in_graph_mode():
self.evaluate(variables.global_variables_initializer())
self.assertEqual("constant_initializer:0", constant_initializer.name)
self.assertEqual(1, self.evaluate(constant_initializer))
self.assertEqual("some_variable_scope/ones_initializer:0",
ones_initializer.name)
self.assertAllEqual([1, 1], self.evaluate(ones_initializer))
self.assertAllEqual([[0., 0.],
[0., 0.]], self.evaluate(bare_initializer))
self.assertEqual("a_variable:0", obj.a_variable.name)
self.assertEqual("duplicate:0", other_duplicate.name)
if context.in_graph_mode():
# The .name attribute may be globally influenced, but the checkpoint name
# won't be (tested below).
self.assertEqual("duplicate_1:0", duplicate.name)
else:
# When executing eagerly, there's no uniquification of variable names. The
# checkpoint name will be the same.
self.assertEqual("duplicate:0", duplicate.name)
named_variables, _ = checkpointable_utils._serialize_object_graph(obj)
expected_checkpoint_names = (
"a_variable/.ATTRIBUTES/VARIABLE_VALUE",
"bare_initializer/.ATTRIBUTES/VARIABLE_VALUE",
"constant_initializer/.ATTRIBUTES/VARIABLE_VALUE",
"duplicate/.ATTRIBUTES/VARIABLE_VALUE",
"ones_initializer/.ATTRIBUTES/VARIABLE_VALUE",
)
six.assertCountEqual(
self, expected_checkpoint_names, named_variables.keys())
开发者ID:dananjayamahesh,项目名称:tensorflow,代码行数:58,代码来源:checkpointable_utils_test.py
示例14: _create_variable_statistics_object
def _create_variable_statistics_object(self):
"""Creates non-trainable variables representing input statistics."""
series_start_moments = Moments(
mean=variable_scope.get_variable(
name="series_start_mean",
shape=[self._num_features],
dtype=self._dtype,
initializer=init_ops.zeros_initializer(),
trainable=False),
variance=variable_scope.get_variable(
name="series_start_variance",
shape=[self._num_features],
dtype=self._dtype,
initializer=init_ops.ones_initializer(),
trainable=False))
overall_feature_moments = Moments(
mean=variable_scope.get_variable(
name="overall_feature_mean",
shape=[self._num_features],
dtype=self._dtype,
initializer=init_ops.zeros_initializer(),
trainable=False),
variance=variable_scope.get_variable(
name="overall_feature_var",
shape=[self._num_features],
dtype=self._dtype,
initializer=init_ops.ones_initializer(),
trainable=False))
start_time = variable_scope.get_variable(
name="start_time",
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
shape=[],
trainable=False)
total_observation_count = variable_scope.get_variable(
name="total_observation_count",
shape=[],
dtype=dtypes.int64,
initializer=init_ops.ones_initializer(),
trainable=False)
return InputStatistics(
series_start_moments=series_start_moments,
overall_feature_moments=overall_feature_moments,
start_time=start_time,
total_observation_count=total_observation_count)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:45,代码来源:math_utils.py
示例15: testLSTMLayer
def testLSTMLayer(self):
# Run with all-0 weights, no padding.
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 0., 0., 0.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 0., 1., 0.)
self.assertAllClose(o, [[[.25]] * self._batch_size,
[[.125]] * self._batch_size,
[[.0625]] * self._batch_size])
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 1., 0., 0.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 1., 1., 0.)
self.assertAllClose(o, [[[.25]] * self._batch_size,
[[.125]] * self._batch_size,
[[.0625]] * self._batch_size])
# Run with all-1 weights, no padding.
weight1 = 1.
for m_init in [0., 1.]:
for c_init in [0., 1.]:
o = self._RunLSTMLayer('ones',
init_ops.ones_initializer(), m_init, c_init, 0.)
m0 = self._NextM(self._inputs, weight1, m_init, c_init)
c0 = self._NextC(self._inputs, weight1, m_init, c_init)
self.assertAllClose(o[0], m0)
m1 = self._NextM(self._inputs, weight1, m0, c0)
c1 = self._NextC(self._inputs, weight1, m0, c0)
self.assertAllClose(o[1], m1)
m2 = self._NextM(self._inputs, weight1, m1, c1)
self.assertAllClose(o[2], m2)
# Run with random weights.
for weight in np.random.rand(3):
weight_tf = constant_op.constant(weight, dtypes.float32)
random_weight = lambda shape, w=weight_tf: array_ops.fill(shape, w)
# No padding.
for m_init in [0., 1.]:
for c_init in [0., 1.]:
o = self._RunLSTMLayer('random', random_weight, m_init, c_init, 0.)
m0 = self._NextM(self._inputs, weight, m_init, c_init)
c0 = self._NextC(self._inputs, weight, m_init, c_init)
self.assertAllClose(o[0], m0)
m1 = self._NextM(self._inputs, weight, m0, c0)
c1 = self._NextC(self._inputs, weight, m0, c0)
self.assertAllClose(o[1], m1)
m2 = self._NextM(self._inputs, weight, m1, c1)
self.assertAllClose(o[2], m2)
# Set padding.
o = self._RunLSTMLayer('random', random_weight, 0., 0., 1.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('random', random_weight, 0., 1., 1.)
self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('random', random_weight, 1., 0., 1.)
self.assertAllClose(o, [[[1.]] * self._batch_size] * 3)
o = self._RunLSTMLayer('random', random_weight, 1., 1., 1.)
self.assertAllClose(o, [[[1.]] * self._batch_size] * 3)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:57,代码来源:lstm_test.py
示例16: testGPU
def testGPU(self):
with self.test_session(use_gpu=True) as sess:
abc = variable_scope.get_variable(
"abc",
shape=[1],
initializer=init_ops.ones_initializer(),
use_resource=True)
sess.run(variables.global_variables_initializer())
print(sess.run(abc))
开发者ID:LugarkPirog,项目名称:tensorflow,代码行数:10,代码来源:resource_variable_ops_test.py
示例17: l2_normalization
def l2_normalization(
inputs,
scaling=False,
scale_initializer=init_ops.ones_initializer(),
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None):
"""Implement L2 normalization on every feature (i.e. spatial normalization).
Should be extended in some near future to other dimensions, providing a more
flexible normalization framework.
inputs: a 4-D tensor with dimensions [batch_size, height, width, channels].
scaling: whether or not to add a post scaling operation along the dimensions
which have been normalized.
scale_initializer: An initializer for the weights.
reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.
variables_collections: optional list of collections for all the variables or
a dictionary containing a different list of collection per variable.
outputs_collections: collection to add the outputs.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
scope: Optional scope for `variable_scope`.
Returns:
A `Tensor` representing the output of the operation.
"""
with variable_scope.variable_scope(
scope, 'L2Normalization', [inputs], reuse=reuse) as sc:
inputs_shape = inputs.get_shape()
inputs_rank = inputs_shape.ndims
params_shape = inputs_shape[-1:]
dtype = inputs.dtype.base_dtype
# Normalize along spatial dimensions.
norm_dim = tf.range(1, inputs_rank-1)
outputs = nn.l2_normalize(inputs, norm_dim, epsilon=1e-12)
# Additional scaling.
if scaling:
scale_collections = utils.get_variable_collections(
variables_collections, 'scale')
scale = variables.model_variable('gamma',
shape=params_shape,
dtype=dtype,
initializer=scale_initializer,
collections=scale_collections,
trainable=trainable)
outputs = tf.multiply(outputs, scale)
return utils.collect_named_outputs(outputs_collections,
sc.original_name_scope, outputs)
开发者ID:bowrian,项目名称:SDC-Vehicle-Detection,代码行数:54,代码来源:custom_layers.py
示例18: _create_vars
def _create_vars(self, var_list, state):
for v in var_list:
if v.get_shape().is_fully_defined():
init_rms = init_ops.ones_initializer(dtype=v.dtype.base_dtype)
else:
init_rms = array_ops.ones_like(v)
state.create_slot_with_initializer(v, init_rms, v.get_shape(),
v.dtype.base_dtype, "rms")
if self._centered:
state.zeros_slot(v, "mg")
state.zeros_slot(v, "momentum")
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:11,代码来源:rmsprop.py
示例19: testGPU
def testGPU(self):
with self.test_session(use_gpu=True) as sess:
abc = variable_scope.get_variable(
"abc",
shape=[1],
initializer=init_ops.ones_initializer(),
use_resource=True)
sess.run(variables.global_variables_initializer())
self.assertEqual(
resource_variable_ops.var_is_initialized_op(abc.handle).eval(), True)
print(sess.run(abc))
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:12,代码来源:resource_variable_ops_test.py
示例20: build
def build(self, input_shape):
"""Creates scale variable if use_scale==True."""
if self.use_scale:
self.scale = self.add_weight(
name='scale',
shape=(),
initializer=init_ops.ones_initializer(),
dtype=self.dtype,
trainable=True)
else:
self.scale = None
super(Attention, self).build(input_shape)
开发者ID:aritratony,项目名称:tensorflow,代码行数:12,代码来源:dense_attention.py
注:本文中的tensorflow.python.ops.init_ops.ones_initializer函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论