本文整理汇总了Python中tensorflow.python.ops.gen_array_ops.identity函数的典型用法代码示例。如果您正苦于以下问题:Python identity函数的具体用法?Python identity怎么用?Python identity使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了identity函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _ensure_unique_tensor_objects
def _ensure_unique_tensor_objects(parameter_positions, args):
"""Make each of the parameter_positions in args a unique ops.Tensor object.
Ensure that each parameter is treated independently.
For example:
def f(x, y): return x * y
g = gradients_function(f)
one = tf.constant(1.)
g(one, one) should return [1., 1.]
(even though the two arguments are the same Tensor object).
Args:
parameter_positions: List of indices into args defining the arguments to
differentiate against.
args: A list of arguments to the function to be differentiated.
Returns:
args, possibly edited in-place.
"""
s = set()
for (i, t) in enumerate(args):
if i in parameter_positions:
tid = ops.tensor_id(t)
if tid in s:
args[i] = gen_array_ops.identity(args[i])
else:
s.add(tid)
return args
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:30,代码来源:backprop.py
示例2: decorated
def decorated(*args, **kwds):
"""Computes the value and gradient of the decorated function."""
parameter_positions = _get_arg_spec(f, params, args)
assert not kwds, "The gradient function can't take keyword arguments."
this_tape = tape.push_new_tape(persistent=persistent)
try:
sources = []
args = [
ops.convert_to_tensor(args[i])
if i in parameter_positions else args[i]
for i in range(len(args))
]
args = _ensure_unique_tensor_objects(parameter_positions, args)
for i in parameter_positions:
sources.append(args[i])
tape.watch(this_tape, args[i])
result = f(*args)
if result is None:
raise ValueError("Cannot differentiate a function that returns None; "
"did you forget to return a value from {}?".format(
f.__name__))
flat_result = nest.flatten(result)
flat_result = [gen_array_ops.identity(x) for x in flat_result]
result = nest.pack_sequence_as(result, flat_result)
finally:
tape.pop_tape(this_tape)
def vjp(dy=None):
if dy is not None:
dy = [ops.convert_to_tensor(x) for x in nest.flatten(dy)]
return imperative_grad.imperative_grad(
this_tape, nest.flatten(result), sources, output_gradients=dy)
return result, vjp
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:33,代码来源:backprop.py
示例3: compute_gradients
def compute_gradients(self, loss, *args, **kwargs):
# Record current global step for worker.
with ops.colocate_with(loss):
self._local_step = training_util.get_global_step() + 0
with ops.control_dependencies([self._local_step]):
loss = gen_array_ops.identity(loss)
return self._opt.compute_gradients(loss, *args, **kwargs)
开发者ID:sandeepgupta2k4,项目名称:tensorflow,代码行数:8,代码来源:drop_stale_gradient_optimizer.py
示例4: decorated
def decorated(*args, **kwargs):
"""Decorated function with custom gradient."""
if context.in_graph_mode():
if kwargs:
raise ValueError(
"custom_gradient in graph mode doesn't support keyword arguments.")
name = "CustomGradient-%s" % tf_ops.uid()
args = [tf_ops.convert_to_tensor(x) for x in args]
result, grad_fn = f(*args)
flat_result = nest.flatten(result)
all_tensors = flat_result + args
@tf_ops.RegisterGradient(name)
def internal_grad_fn(unused_op, *result_grads): # pylint: disable=unused-variable
gradients = nest.flatten(grad_fn(*result_grads[:len(flat_result)]))
# Need to return one value per input to the IdentityN, so pad the
# gradients of the inputs of the custom_gradient function with the
# gradients of the outputs as well.
return ([None] * len(flat_result)) + gradients
with tf_ops.get_default_graph().gradient_override_map(
{"IdentityN": name}):
all_tensors = array_ops.identity_n(all_tensors)
return nest.pack_sequence_as(
structure=result, flat_sequence=all_tensors[:len(flat_result)])
input_tensors = [tf_ops.convert_to_tensor(x) for x in args]
with tape.stop_recording():
result, grad_fn = f(*args, **kwargs)
flat_result = nest.flatten(result)
# TODO(apassos) consider removing the identity below.
flat_result = [gen_array_ops.identity(x) for x in flat_result]
def actual_grad_fn(*outputs):
return nest.flatten(grad_fn(*outputs))
tape.record_operation(
f.__name__,
flat_result,
input_tensors,
actual_grad_fn)
flat_result = list(flat_result)
return nest.pack_sequence_as(result, flat_result)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:44,代码来源:custom_gradient.py
示例5: _eager_mode_decorator
def _eager_mode_decorator(f, *args, **kwargs):
"""Implement custom gradient decorator for eager mode."""
with backprop.GradientTape() as tape:
result, grad_fn = f(*args, **kwargs)
all_inputs = list(args) + list(kwargs.values())
# The variables that grad_fn needs to return gradients for are the set of
# variables used that are *not* part of the inputs.
variables = [v for v in set(tape.watched_variables()) if v not in all_inputs]
grad_argspec = tf_inspect.getfullargspec(grad_fn)
if (variables and ("variables" not in grad_argspec.args) and
not grad_argspec.varkw):
raise TypeError("If using @custom_gradient with a function that "
"uses variables, then grad_fn must accept a keyword "
"argument 'variables'.")
flat_result = nest.flatten(result)
# TODO(apassos) consider removing the identity below.
flat_result = [gen_array_ops.identity(x) for x in flat_result]
input_tensors = [ops.convert_to_tensor(x) for x
in list(args) + list(variables)]
arg_count = len(args)
def actual_grad_fn(*result_grads):
"""Custom grad fn wrapper."""
if variables:
input_grads, variable_grads = grad_fn(*result_grads, variables=variables)
if len(variable_grads) != len(variables):
raise ValueError("Must return gradient for each variable from "
"@custom_gradient grad_fn.")
else:
input_grads = grad_fn(*result_grads)
variable_grads = []
flat_grads = nest.flatten(input_grads)
if len(flat_grads) != arg_count:
raise ValueError(
"custom_gradient function expected to return", arg_count,
"gradients but returned", len(flat_grads), "instead.")
return nest.flatten(input_grads) + variable_grads
tape_lib.record_operation(f.__name__, flat_result, input_tensors,
actual_grad_fn)
flat_result = list(flat_result)
return nest.pack_sequence_as(result, flat_result)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:42,代码来源:custom_gradient.py
示例6: benchmark_tf_gradient_forward_identity
def benchmark_tf_gradient_forward_identity(self):
with backprop.GradientTape() as tape:
m = self._m_2
tape.watch(m)
self._run(lambda: gen_array_ops.identity(m), 30000)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:5,代码来源:benchmarks_test.py
示例7: benchmark_tf_identity
def benchmark_tf_identity(self):
m = self._m_2
self._run(lambda: gen_array_ops.identity(m), 30000)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:3,代码来源:benchmarks_test.py
示例8: _DropGradientOp
def _DropGradientOp():
return gen_array_ops.identity(1.0)
开发者ID:sandeepgupta2k4,项目名称:tensorflow,代码行数:2,代码来源:drop_stale_gradient_optimizer.py
示例9: _AcceptGradientOp
def _AcceptGradientOp():
with ops.control_dependencies(
[self._opt.apply_gradients(
grads_and_vars, global_step=global_step, name=name)]):
return gen_array_ops.identity(0.0)
开发者ID:sandeepgupta2k4,项目名称:tensorflow,代码行数:5,代码来源:drop_stale_gradient_optimizer.py
示例10: benchmark_tf_gradient_function_no_op
def benchmark_tf_gradient_function_no_op(self):
with context.device(CPU):
m = gen_array_ops.identity(self._m_2)
self._run(lambda: backprop.gradients_function(lambda x: x, [0])(m), 30000)
开发者ID:becster,项目名称:tensorflow,代码行数:4,代码来源:benchmarks_test.py
示例11: benchmark_slowpath_tf_identity
def benchmark_slowpath_tf_identity(self):
self._run(lambda: gen_array_ops.identity(1), 30000)
开发者ID:becster,项目名称:tensorflow,代码行数:2,代码来源:benchmarks_test.py
注:本文中的tensorflow.python.ops.gen_array_ops.identity函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论