• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python array_ops.shape_n函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.array_ops.shape_n函数的典型用法代码示例。如果您正苦于以下问题:Python shape_n函数的具体用法?Python shape_n怎么用?Python shape_n使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了shape_n函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _compareShapeN

 def _compareShapeN(self, x, use_gpu=False):
   np_ans = np.array(np.shape(x))
   with self.test_session(use_gpu=use_gpu) as sess:
     tf_ans = array_ops.shape_n([x, x, x])
     tf_ans_64 = array_ops.shape_n([x, x, x], out_type=dtypes.int64)
     result = sess.run(tf_ans)
     result_64 = sess.run(tf_ans_64)
   for i in range(3):
     self.assertAllEqual(np_ans, result[i])
     self.assertAllEqual(np_ans, result_64[i])
     self.assertShapeEqual(np_ans, tf_ans[i])
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:11,代码来源:shape_ops_test.py


示例2: testShapeN

  def testShapeN(self):
    if test.is_gpu_available(cuda_only=True):
      x = array_ops.placeholder(dtype='float32')
      conv = _two_layer_model(x)
      shapen = array_ops.shape_n([conv, conv])
      output = math_ops.add(shapen[0], shapen[1])

      x_val = [1.7] * 784
      with session.Session() as sess:
        output_val_ref = sess.run(output, feed_dict={x: x_val})

      with session.Session(config=_get_config()) as sess:
        metadata = config_pb2.RunMetadata()
        output_val = sess.run(
            output, run_metadata=metadata, feed_dict={
                x: x_val
            })

      nodes = []
      num_transposes = 0
      for node in metadata.cost_graph.node:
        if _is_transpose(node.name):
          num_transposes += 1
        nodes.append(node.name)

      expected_num_transposes = 1
      self.assertEqual(expected_num_transposes, num_transposes)
      self._assert_trans_nhwc_to_nchw('Conv2D-0', nodes)
      self._assert_vec_nchw_to_nhwc('ShapeN-0-0', nodes)
      self.assertAllEqual(output_val_ref, output_val)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:30,代码来源:layout_optimizer_test.py


示例3: _Conv2DGrad

def _Conv2DGrad(op, grad):
  dilations = op.get_attr("dilations")
  strides = op.get_attr("strides")
  padding = op.get_attr("padding")
  use_cudnn_on_gpu = op.get_attr("use_cudnn_on_gpu")
  data_format = op.get_attr("data_format")
  shape_0, shape_1 = array_ops.shape_n([op.inputs[0], op.inputs[1]])
  return [
      nn_ops.conv2d_backprop_input(
          shape_0,
          op.inputs[1],
          grad,
          dilations=dilations,
          strides=strides,
          padding=padding,
          use_cudnn_on_gpu=use_cudnn_on_gpu,
          data_format=data_format),
      nn_ops.conv2d_backprop_filter(
          op.inputs[0],
          shape_1,
          grad,
          dilations=dilations,
          strides=strides,
          padding=padding,
          use_cudnn_on_gpu=use_cudnn_on_gpu,
          data_format=data_format)
  ]
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:27,代码来源:nn_grad.py


示例4: testShapeN

  def testShapeN(self):
    if test.is_gpu_available(cuda_only=True):
      x = array_ops.placeholder(dtype='float32')
      conv = _two_layer_model(x)
      shapen = array_ops.shape_n([conv, conv])
      output = math_ops.add(shapen[0], shapen[1])

      x_val = [1.7] * 784
      with session.Session() as sess:
        output_val_ref = sess.run(output, feed_dict={x: x_val})

      with session.Session(config=_get_config()) as sess:
        metadata = config_pb2.RunMetadata()
        output_val = sess.run(
            output, run_metadata=metadata, feed_dict={
                x: x_val
            })

      nodes = []
      num_transposes = 0
      for node in metadata.cost_graph.node:
        if node.name.startswith('LayoutOptimizerTranspose'):
          num_transposes += 1
        nodes.append(node.name)

      expected_num_transposes = 1
      self.assertEqual(expected_num_transposes, num_transposes)
      self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes)
      self.assertIn('LayoutOptimizerVecPermuteNCHWToNHWC-ShapeN-0-0', nodes)
      self.assertAllEqual(output_val_ref, output_val)
开发者ID:AnddyWang,项目名称:tensorflow,代码行数:30,代码来源:layout_optimizer_test.py


示例5: _initialize_updated_shapes

  def _initialize_updated_shapes(self, session):
    shapes = array_ops.shape_n(self._vars)
    var_shapes = list(map(tuple, session.run(shapes)))

    if self._var_shapes is not None:
      new_old_shapes = zip(self._var_shapes, var_shapes)
      if all([old == new for old, new in new_old_shapes]):
        return

    self._var_shapes = var_shapes
    vars_and_shapes = zip(self._vars, self._var_shapes)
    vars_and_shapes_dict = dict(vars_and_shapes)

    packed_bounds = None
    if self._var_to_bounds is not None:
      left_packed_bounds = []
      right_packed_bounds = []
      for var, var_shape in vars_and_shapes:
        shape = list(var_shape)
        bounds = (-np.infty, np.infty)
        if var in var_to_bounds:
          bounds = var_to_bounds[var]
        left_packed_bounds.extend(list(np.broadcast_to(bounds[0], shape).flat))
        right_packed_bounds.extend(list(np.broadcast_to(bounds[1], shape).flat))
      packed_bounds = list(zip(left_packed_bounds, right_packed_bounds))
    self._packed_bounds = packed_bounds

    self._update_placeholders = [
        array_ops.placeholder(var.dtype) for var in self._vars
    ]
    self._var_updates = [
        var.assign(array_ops.reshape(placeholder, vars_and_shapes_dict[var]))
        for var, placeholder in zip(self._vars, self._update_placeholders)
    ]

    loss_grads = _compute_gradients(self._loss, self._vars)
    equalities_grads = [
        _compute_gradients(equality, self._vars)
        for equality in self._equalities
    ]
    inequalities_grads = [
        _compute_gradients(inequality, self._vars)
        for inequality in self._inequalities
    ]

    self._packed_var = self._pack(self._vars)
    self._packed_loss_grad = self._pack(loss_grads)
    self._packed_equality_grads = [
        self._pack(equality_grads) for equality_grads in equalities_grads
    ]
    self._packed_inequality_grads = [
        self._pack(inequality_grads) for inequality_grads in inequalities_grads
    ]

    dims = [_prod(vars_and_shapes_dict[var]) for var in self._vars]
    accumulated_dims = list(_accumulate(dims))
    self._packing_slices = [
        slice(start, end)
        for start, end in zip(accumulated_dims[:-1], accumulated_dims[1:])
    ]
开发者ID:sanket-kamthe,项目名称:GPflow,代码行数:60,代码来源:external_optimizer.py


示例6: _ExtractInputShapes

  def _ExtractInputShapes(inputs):
    """Extract the shapes of a set of input tensors."""
    if context.executing_eagerly():
      return array_ops.shape_n(inputs)
    sizes = []
    fully_known = True
    for x in inputs:
      input_shape = array_ops.shape(x)
      if not isinstance(input_shape,
                        ops.Tensor) or input_shape.op.type != "Const":
        fully_known = False
        break
      sizes.append(input_shape)

    if fully_known:
      return sizes
    else:
      return array_ops.shape_n(inputs)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:18,代码来源:array_grad.py


示例7: testShapeN

  def testShapeN(self):
    with self.test_scope():
      # Shapes of directly constructed tensors
      shapes = array_ops.shape_n([
          constant_op.constant(1.0),
          constant_op.constant([1.0, 2.0, 3.0]),
          constant_op.constant([[1.0, 2.0], [3.0, 4.0]])])
      self.assertAllEqual(
          [[], [3], [2, 2]],
          [x.numpy().tolist() for x in shapes])

      # Shapes of tensors created by op running on device
      shapes = array_ops.shape_n([
          array_ops.ones([]),
          array_ops.ones([3]),
          array_ops.ones([2, 2])])
      self.assertAllEqual(
          [[], [3], [2, 2]],
          [x.numpy().tolist() for x in shapes])
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:19,代码来源:eager_test.py


示例8: _move_tensors

def _move_tensors(tensors, device):
  """Moves a list of tensors to a device by concatenating/splitting them."""
  # Reset the device setting to avoid weird interactions with device merging
  # logic.
  zero = constant_op.constant(0, dtype=dtypes.int32)
  with ops.device(None):
    if all(tensor.shape == tensor_shape.scalar() for tensor in tensors):
      with ops.device(tensors[0].device):
        values = array_ops.stack(tensors)
      with ops.device(device):
        return array_ops.unstack(values)
    else:
      with ops.device(tensors[0].device):
        sizes = array_ops.stack(array_ops.shape_n(tensors))[:, 0]
        values = array_ops.concat(tensors, axis=zero)
      with ops.device(device):
        sizes = array_ops.unstack(sizes)
        return list(array_ops.split(values, sizes, axis=zero))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:18,代码来源:batch_ops_utils.py


示例9: _Conv2DGrad

def _Conv2DGrad(op, grad):
  """Gradient function for Conv2D."""
  dilations = op.get_attr("dilations")
  strides = op.get_attr("strides")
  padding = op.get_attr("padding")
  explicit_paddings = op.get_attr("explicit_paddings")
  use_cudnn_on_gpu = op.get_attr("use_cudnn_on_gpu")
  data_format = op.get_attr("data_format")
  shape_0, shape_1 = array_ops.shape_n([op.inputs[0], op.inputs[1]])

  # We call the gen_nn_ops backprop functions instead of nn_ops backprop
  # functions for performance reasons in Eager mode. gen_nn_ops functions take a
  # `explicit_paddings` parameter, but nn_ops functions do not. So if were were
  # to use the nn_ops functions, we would have to convert `padding` and
  # `explicit_paddings` into a single `padding` parameter, increasing overhead
  # in Eager mode.
  return [
      gen_nn_ops.conv2d_backprop_input(
          shape_0,
          op.inputs[1],
          grad,
          dilations=dilations,
          strides=strides,
          padding=padding,
          explicit_paddings=explicit_paddings,
          use_cudnn_on_gpu=use_cudnn_on_gpu,
          data_format=data_format),
      gen_nn_ops.conv2d_backprop_filter(
          op.inputs[0],
          shape_1,
          grad,
          dilations=dilations,
          strides=strides,
          padding=padding,
          explicit_paddings=explicit_paddings,
          use_cudnn_on_gpu=use_cudnn_on_gpu,
          data_format=data_format)
  ]
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:38,代码来源:nn_grad.py


示例10: _ConcatGrad

def _ConcatGrad(op, grad):
  """Gradient for concat op."""

  def _CreateDenseMaskAndBegin(sizes, concat_dim):
    """Create variables for iteratively slicing a dense gradients tensor."""
    # Since shape is 1-D, shape_of_shape = [rank-of-inputs]
    shape_of_shape = array_ops.shape(sizes[0])
    # Make a vector of length equal to the input's dimensions,
    # with 0's everywhere and 1 in the concat dim position.
    # Note: Can't use sparse_to_dense since it isn't GPU-capable (for now)
    mask = array_ops.concat(0,
                            [array_ops.fill(
                                array_ops.expand_dims(concat_dim, 0), 0),
                             [1],
                             array_ops.fill(
                                 shape_of_shape - concat_dim - 1, 0)])
    begin = array_ops.fill(shape_of_shape, 0)
    return mask, begin

  # Degenerate concatenation, just return grad.
  if len(op.inputs) == 2:
    return [None, grad]

  concat_dim = op.inputs[0]
  out_grads = []
  if isinstance(grad, ops.Tensor):
    # Get the inputs' tensor shapes
    sizes = array_ops.shape_n(op.inputs[1:])
    # pylint: disable=protected-access
    offset = gen_array_ops._concat_offset(concat_dim, sizes)
    # pylint: enable=protected-access
    for (begin, size) in zip(offset, sizes):
      out_grads.append(array_ops.slice(grad, begin, size))
  elif isinstance(grad, ops.IndexedSlices):
    concat_dim_static = tensor_util.constant_value(concat_dim)
    if concat_dim_static is None:
      raise ValueError("Can only compute IndexedSlices gradient with "
                       "statically-known concat_dim")
    # Get the inputs' tensor shapes
    sizes = [array_ops.shape(x) for x in op.inputs[1:]]
    if concat_dim_static > 0:
      # IndexedSlices, concat_dim > 0. Each input gets IndexedSlices gradients
      # with all the indices, but with grad.values sliced accordingly. This
      # is like the Tensor case, except shape(grad.values)[0] is not equal to
      # shape(sizes[i])[0], since only a subset of the dim-0 values are stored.
      mask, begin = _CreateDenseMaskAndBegin(sizes, concat_dim)
      for size in sizes:
        new_values = array_ops.slice(
            grad.values,
            begin,
            array_ops.concat(0, [[-1], array_ops.slice(size, [1], [-1])]))
        out_grads.append(
            ops.IndexedSlices(new_values, grad.indices, size))
        # Lint complains begin = begin + ...
        begin = math_ops.add(begin, size * mask)
    else:
      # IndexedSlices, concat_dim == 0. Each input gets IndexedSlices gradients
      # only for the relevant indices.
      start = constant_op.constant(0, dtype=grad.indices.dtype)
      for size in sizes:
        size_concat_dim = array_ops.gather(size, concat_dim)
        if size_concat_dim.dtype != grad.indices.dtype:
          size_concat_dim = math_ops.cast(size_concat_dim,
                                          dtype=grad.indices.dtype)
        end = start + size_concat_dim
        # Compute the 1-D Tensor of indices relevant for this input.
        indices_to_select = array_ops.squeeze(
            array_ops.where(math_ops.logical_and(grad.indices >= start,
                                                 grad.indices < end)),
            squeeze_dims=[1])
        new_indices = array_ops.gather(grad.indices, indices_to_select) - start
        new_values = array_ops.gather(grad.values, indices_to_select)
        out_grads.append(
            ops.IndexedSlices(new_values, new_indices, size))
        start = end
  else:
    raise TypeError("Expected Tensor or IndexedSlices, got %s" % type(grad))

  return [None] + out_grads
开发者ID:0ruben,项目名称:tensorflow,代码行数:79,代码来源:array_grad.py


示例11: loop_fn

 def loop_fn(i):
   x_i = array_ops.gather(x, i)
   y_i = array_ops.gather(y, i)
   return array_ops.shape_n([x_i, x, y, y_i]), array_ops.shape_n(
       [x_i, x, y, y_i], out_type=dtypes.int64)
开发者ID:aritratony,项目名称:tensorflow,代码行数:5,代码来源:array_test.py


示例12: _update_ensemble

    def _update_ensemble():
      """A method to update the tree ensemble."""
      # Get next stamp token.
      next_ensemble_stamp = ensemble_stamp + 1
      # Finalize bias stats.
      _, _, _, bias_grads, bias_hess = bias_stats_accumulator.flush(
          ensemble_stamp, next_ensemble_stamp)

      # Finalize handler splits.
      are_splits_ready_list = []
      partition_ids_list = []
      gains_list = []
      split_info_list = []

      for handler in handlers:
        (are_splits_ready,
         partition_ids, gains, split_info) = handler.make_splits(
             ensemble_stamp, next_ensemble_stamp, class_id)
        are_splits_ready_list.append(are_splits_ready)
        partition_ids_list.append(partition_ids)
        gains_list.append(gains)
        split_info_list.append(split_info)
      # Stack all the inputs to one tensor per type.
      # This is a workaround for the slowness of graph building in tf.cond.
      # See (b/36554864).
      split_sizes = array_ops.reshape(
          array_ops.shape_n(partition_ids_list), [len(partition_ids_list)])
      partition_ids = array_ops.concat(partition_ids_list, axis=0)
      gains = array_ops.concat(gains_list, axis=0)
      split_infos = array_ops.concat(split_info_list, axis=0)

      # Determine if all splits are ready.
      are_all_splits_ready = math_ops.reduce_all(
          array_ops.stack(
              are_splits_ready_list, axis=0, name="stack_handler_readiness"))

      # Define bias centering update operation.
      def _center_bias_fn():
        # Center tree ensemble bias.
        delta_updates = array_ops.where(bias_hess > 0, -bias_grads / bias_hess,
                                        array_ops.zeros_like(bias_grads))
        center_bias = training_ops.center_tree_ensemble_bias(
            tree_ensemble_handle=self._ensemble_handle,
            stamp_token=ensemble_stamp,
            next_stamp_token=next_ensemble_stamp,
            delta_updates=delta_updates,
            learner_config=self._learner_config_serialized)
        return continue_centering.assign(center_bias)

      # Define ensemble growing operations.
      def _grow_ensemble_ready_fn():
        # Grow the ensemble given the current candidates.
        sizes = array_ops.unstack(split_sizes)
        partition_ids_list = list(array_ops.split(partition_ids, sizes, axis=0))
        gains_list = list(array_ops.split(gains, sizes, axis=0))
        split_info_list = list(array_ops.split(split_infos, sizes, axis=0))
        return training_ops.grow_tree_ensemble(
            tree_ensemble_handle=self._ensemble_handle,
            stamp_token=ensemble_stamp,
            next_stamp_token=next_ensemble_stamp,
            learning_rate=learning_rate,
            partition_ids=partition_ids_list,
            gains=gains_list,
            splits=split_info_list,
            learner_config=self._learner_config_serialized,
            dropout_seed=dropout_seed,
            center_bias=self._center_bias)

      def _grow_ensemble_not_ready_fn():
        # Don't grow the ensemble, just update the stamp.
        return training_ops.grow_tree_ensemble(
            tree_ensemble_handle=self._ensemble_handle,
            stamp_token=ensemble_stamp,
            next_stamp_token=next_ensemble_stamp,
            learning_rate=0,
            partition_ids=[],
            gains=[],
            splits=[],
            learner_config=self._learner_config_serialized,
            dropout_seed=dropout_seed,
            center_bias=self._center_bias)

      def _grow_ensemble_fn():
        # Conditionally grow an ensemble depending on whether the splits
        # from all the handlers are ready.
        return control_flow_ops.cond(are_all_splits_ready,
                                     _grow_ensemble_ready_fn,
                                     _grow_ensemble_not_ready_fn)

      # Update ensemble.
      update_ops = [are_all_splits_ready]
      if self._center_bias:
        update_model = control_flow_ops.cond(continue_centering,
                                             _center_bias_fn, _grow_ensemble_fn)
      else:
        update_model = _grow_ensemble_fn()
      update_ops.append(update_model)

      # Update ensemble stats.
      with ops.control_dependencies([update_model]):
#.........这里部分代码省略.........
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:101,代码来源:gbdt_batch.py



注:本文中的tensorflow.python.ops.array_ops.shape_n函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python array_ops.size函数代码示例发布时间:2022-05-27
下一篇:
Python array_ops.shape函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap