本文整理汇总了Python中tensorflow.python.ops.array_ops.sequence_mask函数的典型用法代码示例。如果您正苦于以下问题:Python sequence_mask函数的具体用法?Python sequence_mask怎么用?Python sequence_mask使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sequence_mask函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: collapse_repeated
def collapse_repeated(labels, seq_length, name=None):
"""Merge repeated labels into single labels.
Args:
labels: Tensor of shape [batch, max value in seq_length]
seq_length: Tensor of shape [batch], sequence length of each batch element.
name: A name for this `Op`. Defaults to "collapse_repeated_labels".
Returns:
A tuple `(collapsed_labels, new_seq_length)` where
collapsed_labels: Tensor of shape [batch, max_seq_length] with repeated
labels collapsed and padded to max_seq_length, eg:
`[[A, A, B, B, A], [A, B, C, D, E]] => [[A, B, A, 0, 0], [A, B, C, D, E]]`
new_seq_length: int tensor of shape [batch] with new sequence lengths.
"""
with ops.name_scope(name, "collapse_repeated_labels", [labels, seq_length]):
labels = ops.convert_to_tensor(labels, name="labels")
seq_length = ops.convert_to_tensor(seq_length, name="seq_length")
# Mask labels that don't equal previous label.
label_mask = array_ops.concat([
array_ops.ones_like(labels[:, :1], dtypes.bool),
math_ops.not_equal(labels[:, 1:], labels[:, :-1])
],
axis=1)
# Filter labels that aren't in the original sequence.
maxlen = _get_dim(labels, 1)
seq_mask = array_ops.sequence_mask(seq_length, maxlen=maxlen)
label_mask = math_ops.logical_and(label_mask, seq_mask)
# Count masks for new sequence lengths.
new_seq_len = math_ops.reduce_sum(
math_ops.cast(label_mask, dtypes.int32), axis=1)
# Mask indexes based on sequence length mask.
new_maxlen = math_ops.reduce_max(new_seq_len)
idx_mask = array_ops.sequence_mask(new_seq_len, maxlen=new_maxlen)
# Flatten everything and mask out labels to keep and sparse indices.
flat_labels = array_ops.reshape(labels, [-1])
flat_label_mask = array_ops.reshape(label_mask, [-1])
flat_idx_mask = array_ops.reshape(idx_mask, [-1])
idx = math_ops.range(_get_dim(flat_idx_mask, 0))
# Scatter to flat shape.
flat = array_ops.scatter_nd(
indices=array_ops.expand_dims(
array_ops.boolean_mask(idx, flat_idx_mask), axis=1),
updates=array_ops.boolean_mask(flat_labels, flat_label_mask),
shape=array_ops.shape(flat_idx_mask))
# Reshape back to square batch.
batch_size = _get_dim(labels, 0)
new_shape = [batch_size, new_maxlen]
return (array_ops.reshape(flat, new_shape),
math_ops.cast(new_seq_len, seq_length.dtype))
开发者ID:aritratony,项目名称:tensorflow,代码行数:60,代码来源:ctc_ops.py
示例2: testNormal
def testNormal(self):
with self.test_session():
res = array_ops.sequence_mask(constant_op.constant([1, 3, 2]), 5)
self.assertAllEqual(res.get_shape(), [3, 5])
self.assertAllEqual(res.eval(), [[True, False, False, False, False],
[True, True, True, False, False],
[True, True, False, False, False]])
# test dtype and default maxlen:
res = array_ops.sequence_mask(
constant_op.constant([0, 1, 4]), dtype=dtypes.float32)
self.assertAllEqual(res.get_shape().as_list(), [3, None])
self.assertAllEqual(res.eval(), [[0.0, 0.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 1.0]])
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:15,代码来源:array_ops_test.py
示例3: dense_labels_to_sparse
def dense_labels_to_sparse(dense, length):
"""Convert dense labels with sequence lengths to sparse tensor.
Args:
dense: tensor of shape [batch, max_length]
length: int tensor of shape [batch]
The length of each sequence in dense.
Returns:
tf.SparseTensor with values only for the valid elements of sequences.
"""
flat_values = array_ops.reshape(dense, [-1])
flat_indices = math_ops.range(
array_ops.shape(flat_values, out_type=dtypes.int64)[0])
mask = array_ops.sequence_mask(length, maxlen=array_ops.shape(dense)[1])
flat_mask = array_ops.reshape(mask, [-1])
indices = array_ops.expand_dims(
array_ops.boolean_mask(flat_indices, flat_mask), 1)
values = array_ops.boolean_mask(flat_values, flat_mask)
sparse = sparse_tensor.SparseTensor(
indices=indices, values=math_ops.cast(values, dtypes.int32),
dense_shape=array_ops.shape(flat_values, out_type=dtypes.int64))
reshaped = sparse_ops.sparse_reshape(sparse, array_ops.shape(dense))
max_length = math_ops.reduce_max(length)
return sparse_tensor.SparseTensor(
indices=reshaped.indices,
values=reshaped.values,
dense_shape=[
math_ops.cast(reshaped.dense_shape[0], dtypes.int64),
math_ops.cast(max_length, dtypes.int64)])
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:31,代码来源:ctc_ops.py
示例4: crf_unary_score
def crf_unary_score(tag_indices, sequence_lengths, inputs):
"""Computes the unary scores of tag sequences.
Args:
tag_indices: A [batch_size, max_seq_len] matrix of tag indices.
sequence_lengths: A [batch_size] vector of true sequence lengths.
inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials.
Returns:
unary_scores: A [batch_size] vector of unary scores.
"""
batch_size = array_ops.shape(inputs)[0]
max_seq_len = array_ops.shape(inputs)[1]
num_tags = array_ops.shape(inputs)[2]
flattened_inputs = array_ops.reshape(inputs, [-1])
offsets = array_ops.expand_dims(
math_ops.range(batch_size) * max_seq_len * num_tags, 1)
offsets += array_ops.expand_dims(math_ops.range(max_seq_len) * num_tags, 0)
# Use int32 or int64 based on tag_indices' dtype.
if tag_indices.dtype == dtypes.int64:
offsets = math_ops.to_int64(offsets)
flattened_tag_indices = array_ops.reshape(offsets + tag_indices, [-1])
unary_scores = array_ops.reshape(
array_ops.gather(flattened_inputs, flattened_tag_indices),
[batch_size, max_seq_len])
masks = array_ops.sequence_mask(sequence_lengths,
maxlen=array_ops.shape(tag_indices)[1],
dtype=dtypes.float32)
unary_scores = math_ops.reduce_sum(unary_scores * masks, 1)
return unary_scores
开发者ID:Jordan1237,项目名称:tensorflow,代码行数:34,代码来源:crf.py
示例5: crf_binary_score
def crf_binary_score(tag_indices, sequence_lengths, transition_params):
"""Computes the binary scores of tag sequences.
Args:
tag_indices: A [batch_size, max_seq_len] matrix of tag indices.
sequence_lengths: A [batch_size] vector of true sequence lengths.
transition_params: A [num_tags, num_tags] matrix of binary potentials.
Returns:
binary_scores: A [batch_size] vector of binary scores.
"""
# Get shape information.
num_tags = transition_params.get_shape()[0]
num_transitions = array_ops.shape(tag_indices)[1] - 1
# Truncate by one on each side of the sequence to get the start and end
# indices of each transition.
start_tag_indices = array_ops.slice(tag_indices, [0, 0],
[-1, num_transitions])
end_tag_indices = array_ops.slice(tag_indices, [0, 1], [-1, num_transitions])
# Encode the indices in a flattened representation.
flattened_transition_indices = start_tag_indices * num_tags + end_tag_indices
flattened_transition_params = array_ops.reshape(transition_params, [-1])
# Get the binary scores based on the flattened representation.
binary_scores = array_ops.gather(flattened_transition_params,
flattened_transition_indices)
masks = array_ops.sequence_mask(sequence_lengths,
maxlen=array_ops.shape(tag_indices)[1],
dtype=dtypes.float32)
truncated_masks = array_ops.slice(masks, [0, 1], [-1, -1])
binary_scores = math_ops.reduce_sum(binary_scores * truncated_masks, 1)
return binary_scores
开发者ID:Jordan1237,项目名称:tensorflow,代码行数:34,代码来源:crf.py
示例6: mask_activations_and_labels
def mask_activations_and_labels(activations, labels, sequence_lengths):
"""Remove entries outside `sequence_lengths` and returned flattened results.
Args:
activations: Output of the RNN, shape `[batch_size, padded_length, k]`.
labels: Label values, shape `[batch_size, padded_length]`.
sequence_lengths: A `Tensor` of shape `[batch_size]` with the unpadded
length of each sequence. If `None`, then each sequence is unpadded.
Returns:
activations_masked: `logit` values with those beyond `sequence_lengths`
removed for each batch. Batches are then concatenated. Shape
`[tf.sum(sequence_lengths), k]` if `sequence_lengths` is not `None` and
shape `[batch_size * padded_length, k]` otherwise.
labels_masked: Label values after removing unneeded entries. Shape
`[tf.sum(sequence_lengths)]` if `sequence_lengths` is not `None` and shape
`[batch_size * padded_length]` otherwise.
"""
with ops.name_scope('mask_activations_and_labels',
values=[activations, labels, sequence_lengths]):
labels_shape = array_ops.shape(labels)
batch_size = labels_shape[0]
padded_length = labels_shape[1]
if sequence_lengths is None:
flattened_dimension = padded_length * batch_size
activations_masked = array_ops.reshape(activations,
[flattened_dimension, -1])
labels_masked = array_ops.reshape(labels, [flattened_dimension])
else:
mask = array_ops.sequence_mask(sequence_lengths, padded_length)
activations_masked = array_ops.boolean_mask(activations, mask)
labels_masked = array_ops.boolean_mask(labels, mask)
return activations_masked, labels_masked
开发者ID:ivankreso,项目名称:tensorflow,代码行数:33,代码来源:state_saving_rnn_estimator.py
示例7: gather_tree_from_array
def gather_tree_from_array(t, parent_ids, sequence_length):
"""Calculates the full beams for `TensorArray`s.
Args:
t: A stacked `TensorArray` of size `max_time` that contains `Tensor`s of
shape `[batch_size, beam_width, s]` or `[batch_size * beam_width, s]`
where `s` is the depth shape.
parent_ids: The parent ids of shape `[max_time, batch_size, beam_width]`.
sequence_length: The sequence length of shape `[batch_size, beam_width]`.
Returns:
A `Tensor` which is a stacked `TensorArray` of the same size and type as
`t` and where beams are sorted in each `Tensor` according to `parent_ids`.
"""
max_time = parent_ids.shape[0].value or array_ops.shape(parent_ids)[0]
batch_size = parent_ids.shape[1].value or array_ops.shape(parent_ids)[1]
beam_width = parent_ids.shape[2].value or array_ops.shape(parent_ids)[2]
# Generate beam ids that will be reordered by gather_tree.
beam_ids = array_ops.expand_dims(
array_ops.expand_dims(math_ops.range(beam_width), 0), 0)
beam_ids = array_ops.tile(beam_ids, [max_time, batch_size, 1])
mask = array_ops.sequence_mask(
sequence_length, maxlen=max_time, dtype=dtypes.int32)
mask = array_ops.transpose(mask, perm=[2, 0, 1])
# Use beam_width + 1 to mark the end of beam.
masked_beam_ids = (beam_ids * mask) + (1 - mask) * (beam_width + 1)
max_sequence_lengths = math_ops.to_int32(
math_ops.reduce_max(sequence_length, axis=1))
sorted_beam_ids = beam_search_ops.gather_tree(
step_ids=masked_beam_ids,
parent_ids=parent_ids,
max_sequence_lengths=max_sequence_lengths,
end_token=beam_width + 1)
# For out of range steps, simply copy the same beam.
sorted_beam_ids = array_ops.where(
math_ops.cast(mask, dtypes.bool), x=sorted_beam_ids, y=beam_ids)
# Generate indices for gather_nd.
time_ind = array_ops.tile(array_ops.reshape(
math_ops.range(max_time), [-1, 1, 1]), [1, batch_size, beam_width])
batch_ind = array_ops.tile(array_ops.reshape(
math_ops.range(batch_size), [-1, 1, 1]), [1, max_time, beam_width])
batch_ind = array_ops.transpose(batch_ind, perm=[1, 0, 2])
indices = array_ops.stack([time_ind, batch_ind, sorted_beam_ids], -1)
# Gather from a tensor with collapsed additional dimensions.
gather_from = t
final_shape = array_ops.shape(gather_from)
gather_from = array_ops.reshape(
gather_from, [max_time, batch_size, beam_width, -1])
ordered = array_ops.gather_nd(gather_from, indices)
ordered = array_ops.reshape(ordered, final_shape)
return ordered
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:59,代码来源:beam_search_decoder.py
示例8: check_dtypes
def check_dtypes(lengths_dtype, maxlen_dtype):
res = array_ops.sequence_mask(
constant_op.constant([1, 3, 2], dtype=lengths_dtype),
constant_op.constant(5, dtype=maxlen_dtype))
self.assertAllEqual(res.get_shape(), [3, 5])
self.assertAllEqual(res.eval(), [[True, False, False, False, False],
[True, True, True, False, False],
[True, True, False, False, False]])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:8,代码来源:array_ops_test.py
示例9: testOneDimensionalWithMaxlen
def testOneDimensionalWithMaxlen(self):
with self.test_session():
res = array_ops.sequence_mask(constant_op.constant([1, 3, 2]), 5)
self.assertAllEqual(res.get_shape(), [3, 5])
self.assertAllEqual(
res.eval(),
[[True, False, False, False, False], [True, True, True, False, False],
[True, True, False, False, False]])
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:8,代码来源:array_ops_test.py
示例10: testOneDimensionalDtypeWithoutMaxlen
def testOneDimensionalDtypeWithoutMaxlen(self):
with self.test_session():
# test dtype and default maxlen:
res = array_ops.sequence_mask(constant_op.constant([0, 1, 4]),
dtype=dtypes.float32)
self.assertAllEqual(res.get_shape().as_list(), [3, 4])
self.assertAllEqual(
res.eval(),
[[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0]])
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:9,代码来源:array_ops_test.py
示例11: _prepare_memory
def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
"""Convert to tensor and possibly mask `memory`.
Args:
memory: `Tensor`, shaped `[batch_size, max_time, ...]`.
memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
check_inner_dims_defined: Python boolean. If `True`, the `memory`
argument's shape is checked to ensure all but the two outermost
dimensions are fully defined.
Returns:
A (possibly masked), checked, new `memory`.
Raises:
ValueError: If `check_inner_dims_defined` is `True` and not
`memory.shape[2:].is_fully_defined()`.
"""
memory = nest.map_structure(
lambda m: ops.convert_to_tensor(m, name="memory"), memory)
if memory_sequence_length is not None:
memory_sequence_length = ops.convert_to_tensor(
memory_sequence_length, name="memory_sequence_length")
if check_inner_dims_defined:
def _check_dims(m):
if not m.get_shape()[2:].is_fully_defined():
raise ValueError("Expected memory %s to have fully defined inner dims, "
"but saw shape: %s" % (m.name, m.get_shape()))
nest.map_structure(_check_dims, memory)
if memory_sequence_length is None:
seq_len_mask = None
else:
seq_len_mask = array_ops.sequence_mask(
memory_sequence_length,
maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
dtype=nest.flatten(memory)[0].dtype)
seq_len_batch_size = (
memory_sequence_length.shape[0].value
or array_ops.shape(memory_sequence_length)[0])
def _maybe_mask(m, seq_len_mask):
rank = m.get_shape().ndims
rank = rank if rank is not None else array_ops.rank(m)
extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
if memory_sequence_length is not None:
message = ("memory_sequence_length and memory tensor batch sizes do not "
"match.")
with ops.control_dependencies([
check_ops.assert_equal(
seq_len_batch_size, m_batch_size, message=message)]):
seq_len_mask = array_ops.reshape(
seq_len_mask,
array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
return m * seq_len_mask
else:
return m
return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory)
开发者ID:ajaybhat,项目名称:tensorflow,代码行数:56,代码来源:attention_wrapper.py
示例12: _maybe_mask_score
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
if memory_sequence_length is None:
return score
message = ("All values in memory_sequence_length must greater than zero.")
with ops.control_dependencies(
[check_ops.assert_positive(memory_sequence_length, message=message)]):
score_mask = array_ops.sequence_mask(
memory_sequence_length, maxlen=array_ops.shape(score)[1])
score_mask_values = score_mask_value * array_ops.ones_like(score)
return array_ops.where(score_mask, score, score_mask_values)
开发者ID:ajaybhat,项目名称:tensorflow,代码行数:10,代码来源:attention_wrapper.py
示例13: testTwoDimensional
def testTwoDimensional(self):
with self.test_session():
res = array_ops.sequence_mask(constant_op.constant([[1, 3, 2]]), 5)
self.assertAllEqual(res.get_shape(), [1, 3, 5])
self.assertAllEqual(res.eval(), [[[True, False, False, False, False], [
True, True, True, False, False
], [True, True, False, False, False]]])
# test dtype and default maxlen:
res = array_ops.sequence_mask(
constant_op.constant([[0, 1, 4], [1, 2, 3]]), dtype=dtypes.float32)
if ops._USE_C_API:
self.assertAllEqual(res.get_shape().as_list(), [2, 3, 4])
else:
self.assertAllEqual(res.get_shape().as_list(), [2, 3, None])
self.assertAllEqual(
res.eval(),
[[[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0]],
[[1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0]]])
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:19,代码来源:array_ops_test.py
示例14: testOneDimensionalWithoutMaxlen
def testOneDimensionalWithoutMaxlen(self):
with self.test_session():
res = array_ops.sequence_mask(
constant_op.constant([0, 1, 4]))
self.assertAllEqual(res.get_shape().as_list(), [3, 4])
self.assertAllEqual(
res.eval(),
[[False, False, False, False],
[True, False, False, False],
[True, True, True, True]])
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:10,代码来源:array_ops_test.py
示例15: testCtcLossDenseWithBlankIndexIsSameAsCtcLoss
def testCtcLossDenseWithBlankIndexIsSameAsCtcLoss(self):
random_seed.set_random_seed(5)
batch_size = 8
num_labels = 6
label_length = 5
num_frames = 12
logits = random_ops.random_uniform([num_frames, batch_size, num_labels])
labels = random_ops.random_uniform(
[batch_size, label_length], minval=0, maxval=num_labels-1,
dtype=dtypes.int64)
label_lengths = random_ops.random_uniform(
[batch_size], minval=2, maxval=label_length, dtype=dtypes.int64)
label_mask = array_ops.sequence_mask(
label_lengths, maxlen=label_length, dtype=label_lengths.dtype)
labels *= label_mask
logit_lengths = [num_frames] * batch_size
tf_ctc_loss_labels = math_ops.cast(labels, dtypes.int32)
tf_ctc_loss_labels = ctc_ops.dense_labels_to_sparse(
tf_ctc_loss_labels, label_lengths)
tf_nn_ctc_loss = ctc_ops.ctc_loss(
labels=tf_ctc_loss_labels,
inputs=logits,
sequence_length=logit_lengths,
time_major=True)
tf_nn_ctc_grads = gradients_impl.gradients(tf_nn_ctc_loss, [logits])[0]
# Shift the blank logits/labels to be somewhere in the middle.
blank_index = 2
shifted_logits = array_ops.concat([
logits[:, :, :blank_index],
logits[:, :, -1:],
logits[:, :, blank_index:-1],
], axis=2)
shifted_labels = array_ops.where(labels < blank_index, labels, labels + 1)
ctc_loss = ctc_ops.ctc_loss_dense(
labels=shifted_labels,
logits=shifted_logits,
label_length=label_lengths,
logit_length=logit_lengths,
blank_index=blank_index)
ctc_loss_grads = gradients_impl.gradients(ctc_loss, [logits])[0]
with self.cached_session() as sess:
for _ in range(32):
self.assertAllClose(*self.evaluate([ctc_loss, tf_nn_ctc_loss]))
self.assertAllClose(
*self.evaluate([ctc_loss_grads, tf_nn_ctc_grads]),
rtol=2e-06,
atol=2e-06)
开发者ID:aritratony,项目名称:tensorflow,代码行数:55,代码来源:ctc_loss_op_test.py
示例16: _reset_padding
def _reset_padding(self,
memory,
memory_sequence_length,
check_inner_dims_defined=True):
"""Reset the padding part for encoder inputs.
This funtion comes from tensorflow's `_prepare_memory` function.
"""
memory = nest.map_structure(
lambda m: ops.convert_to_tensor(m, name="memory"), memory)
if memory_sequence_length is not None:
memory_sequence_length = ops.convert_to_tensor(
memory_sequence_length, name="memory_sequence_length")
if check_inner_dims_defined:
def _check_dims(m):
if not m.get_shape()[2:].is_fully_defined():
raise ValueError(
"Expected memory %s to have fully defined inner dims, "
"but saw shape: %s" % (m.name, m.get_shape()))
nest.map_structure(_check_dims, memory)
if memory_sequence_length is None:
seq_len_mask = None
else:
seq_len_mask = array_ops.sequence_mask(
memory_sequence_length,
maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
dtype=nest.flatten(memory)[0].dtype)
seq_len_batch_size = (memory_sequence_length.shape[0].value or
array_ops.shape(memory_sequence_length)[0])
def _maybe_mask(m, seq_len_mask):
rank = m.get_shape().ndims
rank = rank if rank is not None else array_ops.rank(m)
extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
if memory_sequence_length is not None:
message = ("memory_sequence_length and memory tensor "
"batch sizes do not match.")
with ops.control_dependencies([
check_ops.assert_equal(
seq_len_batch_size, m_batch_size, message=message)
]):
seq_len_mask = array_ops.reshape(
seq_len_mask,
array_ops.concat(
(array_ops.shape(seq_len_mask), extra_ones), 0))
return m * seq_len_mask
else:
return m
return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask),
memory)
开发者ID:absorbguo,项目名称:Paddle,代码行数:53,代码来源:machine_translation.py
示例17: testCtcLossDenseUniqueFastPathIsSameAsCtcLoss
def testCtcLossDenseUniqueFastPathIsSameAsCtcLoss(self):
random_seed.set_random_seed(5)
batch_size = 8
num_labels = 6
label_length = 5
num_frames = 12
logits = random_ops.random_uniform([num_frames, batch_size, num_labels])
labels = random_ops.random_uniform(
[batch_size, label_length], minval=1, maxval=num_labels,
dtype=dtypes.int64)
label_lengths = random_ops.random_uniform(
[batch_size], minval=2, maxval=label_length, dtype=dtypes.int64)
label_mask = array_ops.sequence_mask(
label_lengths, maxlen=label_length, dtype=label_lengths.dtype)
labels *= label_mask
logit_lengths = [num_frames] * batch_size
ctc_loss = ctc_ops.ctc_loss_dense(
labels=labels,
logits=logits,
label_length=label_lengths,
logit_length=logit_lengths,
unique=ctc_ops.ctc_unique_labels(labels))
ctc_loss_grads = gradients_impl.gradients(ctc_loss, [logits])[0]
# Shift labels down by one (move blank from 0 to num_labels -1)
tf_ctc_loss_labels = math_ops.cast(labels, dtypes.int32) - 1
tf_nn_ctc_logits = array_ops.concat([
logits[:, :, 1:],
logits[:, :, 0:1],
], axis=2)
tf_ctc_loss_labels = ctc_ops.dense_labels_to_sparse(
tf_ctc_loss_labels, label_lengths)
tf_nn_ctc_loss = ctc_ops.ctc_loss(
labels=tf_ctc_loss_labels,
inputs=tf_nn_ctc_logits,
sequence_length=logit_lengths,
time_major=True)
tf_nn_ctc_grads = gradients_impl.gradients(tf_nn_ctc_loss, [logits])[0]
with self.cached_session() as sess:
for _ in range(32):
self.assertAllClose(*self.evaluate([ctc_loss, tf_nn_ctc_loss]))
self.assertAllClose(
*self.evaluate([ctc_loss_grads, tf_nn_ctc_grads]),
rtol=2e-06,
atol=2e-06)
开发者ID:aritratony,项目名称:tensorflow,代码行数:52,代码来源:ctc_loss_op_test.py
示例18: _cdf
def _cdf(self, k):
k = ops.convert_to_tensor(k, name="k")
# If there are multiple batch dimension, flatten them into one.
batch_flattened_probs = array_ops.reshape(self._probs,
[-1, self._event_size])
batch_flattened_k = array_ops.reshape(k, (-1,))
# Form a tensor to sum over.
mask_tensor = array_ops.sequence_mask(batch_flattened_k, self._event_size)
to_sum_over = array_ops.where(mask_tensor,
batch_flattened_probs,
array_ops.zeros_like(batch_flattened_probs))
batch_flat_cdf = math_ops.reduce_sum(to_sum_over, axis=-1)
return array_ops.reshape(batch_flat_cdf, self._batch_shape())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:15,代码来源:categorical.py
示例19: testCtcLossDenseWithNegativeBlankIndexIsSameAsCtcLoss
def testCtcLossDenseWithNegativeBlankIndexIsSameAsCtcLoss(self):
with ops.device("/GPU:0" if test.is_gpu_available() else "/CPU:0"):
random_seed.set_random_seed(5)
batch_size = 8
num_labels = 6
label_length = 5
num_frames = 12
logits = random_ops.random_uniform([num_frames, batch_size, num_labels])
labels = random_ops.random_uniform(
[batch_size, label_length], minval=0, maxval=num_labels-1,
dtype=dtypes.int64)
label_lengths = random_ops.random_uniform(
[batch_size], minval=2, maxval=label_length, dtype=dtypes.int64)
label_mask = array_ops.sequence_mask(
label_lengths, maxlen=label_length, dtype=label_lengths.dtype)
labels *= label_mask
logit_lengths = [num_frames] * batch_size
ctc_loss = ctc_ops.ctc_loss_dense(
labels=labels,
logits=logits,
label_length=label_lengths,
logit_length=logit_lengths,
blank_index=-1)
ctc_loss_grads = gradients_impl.gradients(ctc_loss, [logits])[0]
tf_ctc_loss_labels = math_ops.cast(labels, dtypes.int32)
tf_ctc_loss_labels = ctc_ops.dense_labels_to_sparse(
tf_ctc_loss_labels, label_lengths)
tf_nn_ctc_loss = ctc_ops.ctc_loss(
labels=tf_ctc_loss_labels,
inputs=logits,
sequence_length=logit_lengths,
time_major=True)
tf_nn_ctc_grads = gradients_impl.gradients(tf_nn_ctc_loss, [logits])[0]
with self.cached_session() as sess:
for _ in range(32):
self.assertAllClose(*self.evaluate([ctc_loss, tf_nn_ctc_loss]))
self.assertAllClose(
*self.evaluate([ctc_loss_grads, tf_nn_ctc_grads]),
rtol=2e-06,
atol=2e-06)
开发者ID:aritratony,项目名称:tensorflow,代码行数:47,代码来源:ctc_loss_op_test.py
示例20: testCtcLossV2
def testCtcLossV2(self):
random_seed.set_random_seed(5)
batch_size = 8
num_labels = 6
max_label_length = 5
num_frames = 12
labels = random_ops.random_uniform(
[batch_size, max_label_length], minval=1, maxval=num_labels,
dtype=dtypes.int64)
logits = random_ops.random_uniform([num_frames, batch_size, num_labels])
label_length = random_ops.random_uniform(
[batch_size], minval=2, maxval=max_label_length, dtype=dtypes.int64)
label_mask = array_ops.sequence_mask(
label_length, maxlen=max_label_length, dtype=label_length.dtype)
labels *= label_mask
logit_length = [num_frames] * batch_size
with backprop.GradientTape() as t:
t.watch(logits)
ref_loss = ctc_ops.ctc_loss_v2(
labels=labels,
logits=logits,
label_length=label_length,
logit_length=logit_length)
ref_grad = t.gradient(ref_loss, [logits])
sparse_labels = ctc_ops.dense_labels_to_sparse(labels, label_length)
def assert_same_loss_and_grads(loss):
if context.executing_eagerly():
return
with self.cached_session():
self.assertAllClose(*self.evaluate([loss, ref_loss]))
grad = gradients_impl.gradients(loss, [logits])
self.assertAllClose(
*self.evaluate([grad, ref_grad]), rtol=2e-06, atol=2e-06)
assert_same_loss_and_grads(
ctc_ops.ctc_loss_v2(
labels=sparse_labels,
logits=logits,
label_length=label_length,
logit_length=logit_length,
blank_index=0))
开发者ID:aritratony,项目名称:tensorflow,代码行数:47,代码来源:ctc_loss_op_test.py
注:本文中的tensorflow.python.ops.array_ops.sequence_mask函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论