本文整理汇总了Python中tensorflow.python.ops.array_ops.placeholder_with_default函数的典型用法代码示例。如果您正苦于以下问题:Python placeholder_with_default函数的具体用法?Python placeholder_with_default怎么用?Python placeholder_with_default使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了placeholder_with_default函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testBatchFunctionOpWithCapturedInput
def testBatchFunctionOpWithCapturedInput(self):
"""Tests that batch_function op works with captured input."""
with self.test_session() as sess:
captured_inp0 = array_ops.placeholder_with_default(2, shape=[])
captured_inp1 = array_ops.placeholder_with_default(1, shape=[])
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
@function.Defun(dtypes.int32)
def computation(inp):
return inp + captured_inp0 - captured_inp1
result = gen_batch_ops.batch_function(
num_batch_threads=1,
max_batch_size=10,
batch_timeout_micros=100000, # 100ms
allowed_batch_sizes=[3, 10],
batching_queue="",
f=computation,
in_tensors=[inp],
captured_tensors=computation.captured_inputs,
Tout=[o.type for o in computation.definition.signature.output_arg])
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [2]})
worker_thread.join()
self.assertEqual(thread_results[0], [2])
self.assertEqual(main_results[0], [3])
开发者ID:AnishShah,项目名称:tensorflow,代码行数:33,代码来源:batch_ops_test.py
示例2: test_bad_reshape_size
def test_bad_reshape_size(self):
dims = 2
new_batch_shape = [2, 3]
old_batch_shape = [2] # 2 != 2*3
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = np.ones(old_batch_shape + [dims], self.dtype)
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)
if self.is_static_shape:
with self.assertRaisesRegexp(
ValueError, (r"`batch_shape` size \(6\) must match "
r"`distribution\.batch_shape` size \(2\)")):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True)
else:
with self.test_session():
with self.assertRaisesOpError(r"Shape sizes do not match."):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True).sample().eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:31,代码来源:batch_reshape_test.py
示例3: testError
def testError(self,
descr,
mode,
data,
repeats,
axis,
exception=ValueError,
error=None):
# Make sure that this is also an error case for numpy.
with self.assertRaises(exception):
np.repeat(data, repeats, axis)
if mode == 'constant':
data = constant_op.constant(data)
repeats = constant_op.constant(repeats)
elif mode == 'dynamic':
data = constant_op.constant(data)
repeats = constant_op.constant(repeats)
data = array_ops.placeholder_with_default(data, data.shape)
repeats = array_ops.placeholder_with_default(repeats, repeats.shape)
elif mode == 'unknown_shape':
data = array_ops.placeholder_with_default(data, None)
repeats = array_ops.placeholder_with_default(repeats, None)
with self.assertRaisesRegexp(exception, error):
ragged_util.repeat(data, repeats, axis)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:26,代码来源:ragged_util_test.py
示例4: test_non_positive_shape
def test_non_positive_shape(self):
dims = 2
old_batch_shape = [4]
if self.is_static_shape:
# Unknown first dimension does not trigger size check. Note that
# any dimension < 0 is treated statically as unknown.
new_batch_shape = [-1, 0]
else:
new_batch_shape = [-2, -2] # -2 * -2 = 4, same size as the old shape.
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = np.ones(old_batch_shape + [dims], self.dtype)
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)
if self.is_static_shape:
with self.assertRaisesRegexp(ValueError, r".*must be >=-1.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True)
else:
with self.test_session():
with self.assertRaisesOpError(r".*must be >=-1.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True).sample().eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:34,代码来源:batch_reshape_test.py
示例5: test_non_vector_shape
def test_non_vector_shape(self):
dims = 2
new_batch_shape = 2
old_batch_shape = [2]
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = np.ones(old_batch_shape + [dims], self.dtype)
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)
if self.is_static_shape:
with self.assertRaisesRegexp(ValueError, r".*must be a vector.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True)
else:
with self.test_session():
with self.assertRaisesOpError(r".*must be a vector.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True).sample().eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:29,代码来源:batch_reshape_test.py
示例6: test_broadcasting_explicitly_unsupported
def test_broadcasting_explicitly_unsupported(self):
old_batch_shape = [4]
new_batch_shape = [1, 4, 1]
rate_ = self.dtype([1, 10, 2, 20])
rate = array_ops.placeholder_with_default(
rate_,
shape=old_batch_shape if self.is_static_shape else None)
poisson_4 = poisson_lib.Poisson(rate)
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
poisson_141_reshaped = batch_reshape_lib.BatchReshape(
poisson_4, new_batch_shape_ph, validate_args=True)
x_4 = self.dtype([2, 12, 3, 23])
x_114 = self.dtype([2, 12, 3, 23]).reshape(1, 1, 4)
if self.is_static_shape:
with self.assertRaisesRegexp(NotImplementedError,
"too few batch and event dims"):
poisson_141_reshaped.log_prob(x_4)
with self.assertRaisesRegexp(NotImplementedError,
"unexpected batch and event shape"):
poisson_141_reshaped.log_prob(x_114)
return
with self.assertRaisesOpError("too few batch and event dims"):
with self.test_session():
poisson_141_reshaped.log_prob(x_4).eval()
with self.assertRaisesOpError("unexpected batch and event shape"):
with self.test_session():
poisson_141_reshaped.log_prob(x_114).eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:35,代码来源:batch_reshape_test.py
示例7: testBatchDecoratedWithCapturedInput
def testBatchDecoratedWithCapturedInput(self):
"""Tests that the batch_function decorator works."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
captured_inp0 = array_ops.placeholder_with_default(2, shape=[])
captured_inp1 = array_ops.placeholder_with_default(1, shape=[])
@batch_ops.batch_function(1, 10, 100000)
def computation(in_t):
return in_t + captured_inp0 - captured_inp1
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
result = computation(inp)
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [2]})
worker_thread.join()
self.assertEqual(thread_results[0], [2])
self.assertEqual(main_results[0], [3])
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:25,代码来源:batch_ops_test.py
示例8: testCDFWithDynamicEventShapeUnknownNdims
def testCDFWithDynamicEventShapeUnknownNdims(
self, events, histograms, expected_cdf):
"""Test that dynamically-sized events with unknown shape work."""
event_ph = array_ops.placeholder_with_default(events, shape=None)
histograms_ph = array_ops.placeholder_with_default(histograms, shape=None)
dist = categorical.Categorical(probs=histograms_ph)
cdf_op = dist.cdf(event_ph)
actual_cdf = self.evaluate(cdf_op)
self.assertAllClose(actual_cdf, expected_cdf)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:10,代码来源:categorical_test.py
示例9: testRaggedTensorSplitsMismatchErrorAtRuntime
def testRaggedTensorSplitsMismatchErrorAtRuntime(self):
splits1 = array_ops.placeholder_with_default(
constant_op.constant([0, 3, 3, 5], dtypes.int64), None)
splits2 = array_ops.placeholder_with_default(
constant_op.constant([0, 1, 3, 5], dtypes.int64), None)
x = ragged_tensor.RaggedTensor.from_row_splits([3, 1, 4, 1, 5], splits1)
y = ragged_tensor.RaggedTensor.from_row_splits([1, 2, 3, 4, 5], splits2)
with self.assertRaisesRegexp(errors.InvalidArgumentError,
r'.*Inputs must have identical ragged splits'):
self.evaluate(ragged_functional_ops.map_flat_values(math_ops.add, x, y))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:10,代码来源:ragged_map_flat_values_op_test.py
示例10: setUp
def setUp(self):
super(BatchSequencesWithStatesTest, self).setUp()
self.value_length = 4
ind1 = np.array([
[0, 0],
[1, 0], [1, 3], [1, 4],
[3, 2], [3, 3]])
val1 = np.array([0, 10, 13, 14, 32, 33])
shape1 = np.array([self.value_length, 6])
sp_tensor1 = sparse_tensor.SparseTensor(
array_ops.constant(ind1, dtypes.int64),
array_ops.constant(val1, dtypes.int64),
array_ops.placeholder_with_default(shape1, shape=[2]))
ind2 = np.array([
[0, 0, 1],
[0, 1, 0],
[0, 1, 2],
[1, 0, 3],
[1, 1, 0],
[1, 1, 1],
[1, 1, 2],
[1, 2, 2]])
val2 = np.array([1, 10, 12, 103, 150, 149, 150, 122])
shape2 = np.array([self.value_length, 3, 4])
sp_tensor2 = sparse_tensor.SparseTensor(
array_ops.constant(ind2, dtypes.int64),
array_ops.constant(val2, dtypes.int64),
array_ops.placeholder_with_default(shape2, shape=[3]))
sp_tensor3 = sparse_tensor.SparseTensor(
array_ops.constant([[1, 9], [2, 2], [2, 10]], dtypes.int64),
array_ops.constant([7, 15, 2], dtypes.int64),
array_ops.constant([5, 12], dtypes.int64)
)
self.sp_tensor3_expected = sparse_tensor.SparseTensorValue(
[[0, 1, 9], [0, 2, 2], [0, 2, 10], [1, 1, 9], [1, 2, 2], [1, 2, 10]],
[7, 15, 2, 7, 15, 2],
[2, 5, 12]
)
self.batch_size = 2
self.key = string_ops.string_join([
"key_", string_ops.as_string(
math_ops.cast(10000 * random_ops.random_uniform(()), dtypes.int32))
])
self.sequences = {
"seq1": np.random.rand(self.value_length, 5),
"seq2": np.random.rand(self.value_length, 4, 2),
"seq3": sp_tensor1,
"seq4": sp_tensor2}
self.context = {
"context1": [3, 4],
"sp_context": sp_tensor3}
self.initial_states = {
"state1": np.random.rand(6, 7),
"state2": np.random.rand(8)
}
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:55,代码来源:batch_sequences_with_states_test.py
示例11: testDynamicShapes
def testDynamicShapes(self):
for dtype in [dtypes.float32, dtypes.float64]:
default_x1 = constant_op.constant(0.1, dtype=dtype)
default_x2 = constant_op.constant(3.1, dtype=dtype)
x1 = array_ops.placeholder_with_default(default_x1, shape=None)
x2 = array_ops.placeholder_with_default(default_x2, shape=None)
dx1, dx2 = self._nextafter_gradient(x1, x2)
expected_dx1 = constant_op.constant(1, dtype=dtype)
expected_dx2 = constant_op.constant(0, dtype=dtype)
self.assertAllClose(expected_dx1, dx1)
self.assertAllClose(expected_dx2, dx2)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:11,代码来源:math_grad_test.py
示例12: testSampleProbConsistentBroadcastBoth
def testSampleProbConsistentBroadcastBoth(self):
with self.test_session() as sess:
pln = poisson_lognormal.PoissonLogNormalQuadratureCompound(
loc=array_ops.placeholder_with_default(
[[0.], [-0.5]],
shape=[2, 1] if self.static_shape else None),
scale=array_ops.placeholder_with_default(
[[1., 0.9]],
shape=[1, 2] if self.static_shape else None),
quadrature_size=10,
validate_args=True)
self.run_test_sample_consistent_log_prob(
sess.run, pln, batch_size=4, rtol=0.1, atol=0.08)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:poisson_lognormal_test.py
示例13: testMeanVarianceBroadcastScalar
def testMeanVarianceBroadcastScalar(self):
with self.test_session() as sess:
pln = poisson_lognormal.PoissonLogNormalQuadratureCompound(
loc=array_ops.placeholder_with_default(
[0., -0.5],
shape=[2] if self.static_shape else None),
scale=array_ops.placeholder_with_default(
1.,
shape=[] if self.static_shape else None),
quadrature_size=10,
validate_args=True)
self.run_test_sample_consistent_mean_variance(
sess.run, pln, rtol=0.1, atol=0.01)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:poisson_lognormal_test.py
示例14: testRaggedTensorSplitsMismatchErrorAtRuntime
def testRaggedTensorSplitsMismatchErrorAtRuntime(self):
splits1 = array_ops.placeholder_with_default(
constant_op.constant([0, 3, 3, 5], dtypes.int64), None)
splits2 = array_ops.placeholder_with_default(
constant_op.constant([0, 1, 3, 5], dtypes.int64), None)
x = ragged.from_row_splits([3, 1, 4, 1, 5], splits1)
y = ragged.from_row_splits([1, 2, 3, 4, 5], splits2)
result = ragged.map_inner_values(math_ops.add, x, y)
with self.test_session():
self.assertRaisesRegexp(
errors.InvalidArgumentError,
r'\[Inputs must have identical ragged splits\] '
r'\[Condition x == y did not hold element-wise:\].*', result.eval)
开发者ID:aeverall,项目名称:tensorflow,代码行数:13,代码来源:ragged_map_inner_values_op_test.py
示例15: testSampleProbConsistent
def testSampleProbConsistent(self):
with self.test_session() as sess:
pln = poisson_lognormal.PoissonLogNormalQuadratureCompound(
loc=array_ops.placeholder_with_default(
-2.,
shape=[] if self.static_shape else None),
scale=array_ops.placeholder_with_default(
1.1,
shape=[] if self.static_shape else None),
quadrature_size=10,
validate_args=True)
self.run_test_sample_consistent_log_prob(
sess.run, pln, batch_size=1, rtol=0.1)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:poisson_lognormal_test.py
示例16: make_mvn
def make_mvn(self, dims, new_batch_shape, old_batch_shape):
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = np.ones(old_batch_shape + [dims], self.dtype)
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)
reshape_mvn = batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True)
return mvn, reshape_mvn
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:15,代码来源:batch_reshape_test.py
示例17: operator_and_matrix
def operator_and_matrix(
self, build_info, dtype, use_placeholder,
ensure_self_adjoint_and_pd=False):
shape = list(build_info.shape)
row = np.random.uniform(low=1., high=5., size=shape[:-1])
col = np.random.uniform(low=1., high=5., size=shape[:-1])
# Make sure first entry is the same
row[..., 0] = col[..., 0]
if ensure_self_adjoint_and_pd:
# Note that a Toeplitz matrix generated from a linearly decreasing
# non-negative sequence is positive definite. See
# https://www.math.cinvestav.mx/~grudsky/Papers/118_29062012_Albrecht.pdf
# for details.
row = np.linspace(start=10., stop=1., num=shape[-1])
# The entries for the first row and column should be the same to guarantee
# symmetric.
row = col
lin_op_row = math_ops.cast(row, dtype=dtype)
lin_op_col = math_ops.cast(col, dtype=dtype)
if use_placeholder:
lin_op_row = array_ops.placeholder_with_default(
lin_op_row, shape=None)
lin_op_col = array_ops.placeholder_with_default(
lin_op_col, shape=None)
operator = linear_operator_toeplitz.LinearOperatorToeplitz(
row=lin_op_row,
col=lin_op_col,
is_self_adjoint=True if ensure_self_adjoint_and_pd else None,
is_positive_definite=True if ensure_self_adjoint_and_pd else None)
flattened_row = np.reshape(row, (-1, shape[-1]))
flattened_col = np.reshape(col, (-1, shape[-1]))
flattened_toeplitz = np.zeros(
[flattened_row.shape[0], shape[-1], shape[-1]])
for i in range(flattened_row.shape[0]):
flattened_toeplitz[i] = scipy.linalg.toeplitz(
flattened_col[i],
flattened_row[i])
matrix = np.reshape(flattened_toeplitz, shape)
matrix = math_ops.cast(matrix, dtype=dtype)
return operator, matrix
开发者ID:aritratony,项目名称:tensorflow,代码行数:48,代码来源:linear_operator_toeplitz_test.py
示例18: test_placeholder_with_default_fed
def test_placeholder_with_default_fed(self):
with self.test_session() as sess, self.test_scope():
v = resource_variable_ops.ResourceVariable(4.0)
ph = array_ops.placeholder_with_default(v, shape=[])
out = ph * 2
sess.run(variables.variables_initializer([v]))
self.assertEqual(2.0, sess.run(out, {ph: 1.0}))
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:7,代码来源:placeholder_test.py
示例19: _serving_input_receiver_fn
def _serving_input_receiver_fn():
"""A receiver function to be passed to export_savedmodel."""
placeholders = {}
placeholders[feature_keys.TrainEvalFeatures.TIMES] = (
array_ops.placeholder(
name=feature_keys.TrainEvalFeatures.TIMES,
dtype=dtypes.int64,
shape=[default_batch_size, default_series_length]))
# Values are only necessary when filtering. For prediction the default
# value will be ignored.
placeholders[feature_keys.TrainEvalFeatures.VALUES] = (
array_ops.placeholder_with_default(
name=feature_keys.TrainEvalFeatures.VALUES,
input=array_ops.zeros(
shape=[
default_batch_size
if default_batch_size else 0, default_series_length
if default_series_length else 0, self._model.num_features
],
dtype=self._model.dtype),
shape=(default_batch_size, default_series_length,
self._model.num_features)))
if self._model.exogenous_feature_columns:
with ops.Graph().as_default():
# Default placeholders have only an unknown batch dimension. Make them
# in a separate graph, then splice in the series length to the shapes
# and re-create them in the outer graph.
parsed_features = (
feature_column.make_parse_example_spec(
self._model.exogenous_feature_columns))
placeholder_features = parsing_ops.parse_example(
serialized=array_ops.placeholder(
shape=[None], dtype=dtypes.string),
features=parsed_features)
exogenous_feature_shapes = {
key: (value.get_shape(), value.dtype) for key, value
in placeholder_features.items()}
for feature_key, (batch_only_feature_shape, value_dtype) in (
exogenous_feature_shapes.items()):
batch_only_feature_shape = (
batch_only_feature_shape.with_rank_at_least(1).as_list())
feature_shape = ([default_batch_size, default_series_length]
+ batch_only_feature_shape[1:])
placeholders[feature_key] = array_ops.placeholder(
dtype=value_dtype, name=feature_key, shape=feature_shape)
# Models may not know the shape of their state without creating some
# variables/ops. Avoid polluting the default graph by making a new one. We
# use only static metadata from the returned Tensors.
with ops.Graph().as_default():
self._model.initialize_graph()
model_start_state = self._model.get_start_state()
for prefixed_state_name, state_tensor in ts_head_lib.state_to_dictionary(
model_start_state).items():
state_shape_with_batch = tensor_shape.TensorShape(
(default_batch_size,)).concatenate(state_tensor.get_shape())
placeholders[prefixed_state_name] = array_ops.placeholder(
name=prefixed_state_name,
shape=state_shape_with_batch,
dtype=state_tensor.dtype)
return export_lib.ServingInputReceiver(placeholders, placeholders)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:60,代码来源:estimators.py
示例20: make_normal
def make_normal(self, new_batch_shape, old_batch_shape):
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = self.dtype(0.5 + np.arange(
np.prod(old_batch_shape)).reshape(old_batch_shape))
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
normal = normal_lib.Normal(loc=self.dtype(0), scale=scale_ph)
reshape_normal = batch_reshape_lib.BatchReshape(
distribution=normal,
batch_shape=new_batch_shape_ph,
validate_args=True)
return normal, reshape_normal
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:16,代码来源:batch_reshape_test.py
注:本文中的tensorflow.python.ops.array_ops.placeholder_with_default函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论