• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python array_ops.matrix_transpose函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.array_ops.matrix_transpose函数的典型用法代码示例。如果您正苦于以下问题:Python matrix_transpose函数的具体用法?Python matrix_transpose怎么用?Python matrix_transpose使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了matrix_transpose函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_defining_spd_operator_by_taking_real_part

  def test_defining_spd_operator_by_taking_real_part(self):
    with self.cached_session() as sess:
      # S is real and positive.
      s = linear_operator_test_util.random_uniform(
          shape=(10, 2, 3, 4), dtype=dtypes.float32, minval=1., maxval=2.)

      # Let S = S1 + S2, the Hermitian and anti-hermitian parts.
      # S1 = 0.5 * (S + S^H), S2 = 0.5 * (S - S^H),
      # where ^H is the Hermitian transpose of the function:
      #    f(n0, n1, n2)^H := ComplexConjugate[f(N0-n0, N1-n1, N2-n2)].
      # We want to isolate S1, since
      #   S1 is Hermitian by construction
      #   S1 is real since S is
      #   S1 is positive since it is the sum of two positive kernels

      # IDFT[S] = IDFT[S1] + IDFT[S2]
      #         =      H1  +      H2
      # where H1 is real since it is Hermitian,
      # and H2 is imaginary since it is anti-Hermitian.
      ifft_s = fft_ops.ifft3d(math_ops.cast(s, dtypes.complex64))

      # Throw away H2, keep H1.
      real_ifft_s = math_ops.real(ifft_s)

      # This is the perfect spectrum!
      # spectrum = DFT[H1]
      #          = S1,
      fft_real_ifft_s = fft_ops.fft3d(
          math_ops.cast(real_ifft_s, dtypes.complex64))

      # S1 is Hermitian ==> operator is real.
      # S1 is real ==> operator is self-adjoint.
      # S1 is positive ==> operator is positive-definite.
      operator = linalg.LinearOperatorCirculant3D(fft_real_ifft_s)

      # Allow for complex output so we can check operator has zero imag part.
      self.assertEqual(operator.dtype, dtypes.complex64)
      matrix, matrix_t = sess.run([
          operator.to_dense(),
          array_ops.matrix_transpose(operator.to_dense())
      ])
      operator.assert_positive_definite().run()  # Should not fail.
      np.testing.assert_allclose(0, np.imag(matrix), atol=1e-6)
      self.assertAllClose(matrix, matrix_t)

      # Just to test the theory, get S2 as well.
      # This should create an imaginary operator.
      # S2 is anti-Hermitian ==> operator is imaginary.
      # S2 is real ==> operator is self-adjoint.
      imag_ifft_s = math_ops.imag(ifft_s)
      fft_imag_ifft_s = fft_ops.fft3d(
          1j * math_ops.cast(imag_ifft_s, dtypes.complex64))
      operator_imag = linalg.LinearOperatorCirculant3D(fft_imag_ifft_s)

      matrix, matrix_h = sess.run([
          operator_imag.to_dense(),
          array_ops.matrix_transpose(math_ops.conj(operator_imag.to_dense()))
      ])
      self.assertAllClose(matrix, matrix_h)
      np.testing.assert_allclose(0, np.real(matrix), atol=1e-7)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:60,代码来源:linear_operator_circulant_test.py


示例2: __call__

  def __call__(self, shape, dtype=dtypes.float32):
    """Returns a tensor object initialized as specified by the initializer.

    Args:
      shape: Shape of the tensor.
      dtype: Optional dtype of the tensor. Only floating point types are
       supported.

    Raises:
      ValueError: If the dtype is not floating point or the input shape is not
       valid.
    """
    dtype = _assert_float_dtype(dtype)
    # Check the shape
    if len(shape) < 2:
      raise ValueError("The tensor to initialize must be "
                       "at least two-dimensional")
    # Flatten the input shape with the last dimension remaining
    # its original shape so it works for conv2d
    num_rows = 1
    for dim in shape[:-1]:
      num_rows *= dim
    num_cols = shape[-1]
    flat_shape = (max(num_cols, num_rows), min(num_cols, num_rows))

    # Generate a random matrix
    a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = gen_linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    d = array_ops.diag_part(r)
    q *= math_ops.sign(d)
    if num_rows < num_cols:
      q = array_ops.matrix_transpose(q)
    return self.gain * array_ops.reshape(q, shape)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:35,代码来源:init_ops_v2.py


示例3: testNonBatchMatrix

 def testNonBatchMatrix(self):
   matrix = [[1, 2, 3], [4, 5, 6]]  # Shape (2, 3)
   expected_transposed = [[1, 4], [2, 5], [3, 6]]  # Shape (3, 2)
   with self.test_session():
     transposed = array_ops.matrix_transpose(matrix)
     self.assertEqual((3, 2), transposed.get_shape())
     self.assertAllEqual(expected_transposed, transposed.eval())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:array_ops_test.py


示例4: adjoint

def adjoint(matrix, name=None):
  """Transposes the last two dimensions of and conjugates tensor `matrix`.

  For example:

  ```python
  x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
                   [4 + 4j, 5 + 5j, 6 + 6j]])
  tf.linalg.adjoint(x)  # [[1 - 1j, 4 - 4j],
                        #  [2 - 2j, 5 - 5j],
                        #  [3 - 3j, 6 - 6j]]
  ```

  Args:
    matrix:  A `Tensor`. Must be `float16`, `float32`, `float64`, `complex64`,
      or `complex128` with shape `[..., M, M]`.
    name:  A name to give this `Op` (optional).

  Returns:
    The adjoint (a.k.a. Hermitian transpose a.k.a. conjugate transpose) of
    matrix.
  """
  with ops.name_scope(name, 'adjoint', [matrix]):
    matrix = ops.convert_to_tensor(matrix, name='matrix')
    return array_ops.matrix_transpose(matrix, conjugate=True)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:25,代码来源:linalg_impl.py


示例5: __call__

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    # Check the shape
    if len(shape) < 2:
      raise ValueError("The tensor to initialize must be "
                       "at least two-dimensional")
    # Flatten the input shape with the last dimension remaining
    # its original shape so it works for conv2d
    num_rows = 1
    for dim in shape[:-1]:
      num_rows *= dim
    num_cols = shape[-1]
    flat_shape = (num_cols, num_rows) if num_rows < num_cols else (num_rows,
                                                                   num_cols)

    # Generate a random matrix
    a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    d = array_ops.diag_part(r)
    q *= math_ops.sign(d)
    if num_rows < num_cols:
      q = array_ops.matrix_transpose(q)
    return self.gain * array_ops.reshape(q, shape)
开发者ID:moses-sun,项目名称:tensorflow,代码行数:26,代码来源:init_ops.py


示例6: _overdetermined

  def _overdetermined(op, grad):
    """Gradients for the overdetermined case of MatrixSolveLs.

    This is the backprop for the solution to the normal equations of the first
    kind:
       X = F(A, B) = (A^T * A + lambda * I)^{-1} * A^T * B
    which solve the least squares problem
       min ||A * X - B||_F^2 + lambda ||X||_F^2.
    """
    a = op.inputs[0]
    b = op.inputs[1]
    l2_regularizer = math_ops.cast(op.inputs[2], a.dtype.base_dtype)
    x = op.outputs[0]
    a_shape = array_ops.shape(a)
    batch_shape = a_shape[:-2]
    n = a_shape[-1]

    identity = linalg_ops.eye(n, batch_shape=batch_shape, dtype=a.dtype)
    gramian = math_ops.matmul(a, a, adjoint_a=True) + l2_regularizer * identity
    chol = linalg_ops.cholesky(gramian)
    # Temporary z = (A^T * A + lambda * I)^{-1} * grad.
    z = linalg_ops.cholesky_solve(chol, grad)
    xzt = math_ops.matmul(x, z, adjoint_b=True)
    zx_sym = xzt + array_ops.matrix_transpose(xzt)
    grad_a = -math_ops.matmul(a, zx_sym) + math_ops.matmul(b, z, adjoint_b=True)
    grad_b = math_ops.matmul(a, z)
    return (grad_a, grad_b, None)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:27,代码来源:linalg_grad.py


示例7: _unvec_by

def _unvec_by(y, num_col):
  """Unstack vector to form a matrix, with a specified amount of columns."""
  return array_ops.matrix_transpose(
      array_ops.reshape(
          y,
          array_ops.concat(
              [array_ops.shape(y)[:-1], [num_col, -1]], axis=0)))
开发者ID:aritratony,项目名称:tensorflow,代码行数:7,代码来源:linear_operator_kronecker.py


示例8: _covariance

 def _covariance(self):
   if (isinstance(self.scale, linalg.LinearOperatorIdentity) or
       isinstance(self.scale, linalg.LinearOperatorScaledIdentity) or
       isinstance(self.scale, linalg.LinearOperatorDiag)):
     return array_ops.matrix_diag(math_ops.square(self.scale.diag_part()))
   else:
     # TODO(b/35040238): Remove transpose once LinOp supports `transpose`.
     return self.scale.apply(array_ops.matrix_transpose(self.scale.to_dense()))
开发者ID:jzuern,项目名称:tensorflow,代码行数:8,代码来源:mvn_linear_operator.py


示例9: testConjugate

 def testConjugate(self):
   m = [[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]
   expected_transposed = [[1 - 1j, 4 - 4j], [2 - 2j, 5 - 5j], [3 - 3j, 6 - 6j]]
   with self.test_session():
     matrix = ops.convert_to_tensor(m)
     transposed = array_ops.matrix_transpose(matrix, conjugate=True)
     self.assertEqual((3, 2), transposed.get_shape())
     self.assertAllEqual(expected_transposed, transposed.eval())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:8,代码来源:array_ops_test.py


示例10: testNonBatchMatrixDynamicallyDefined

 def testNonBatchMatrixDynamicallyDefined(self):
   matrix = [[1, 2, 3], [4, 5, 6]]  # Shape (2, 3)
   expected_transposed = [[1, 4], [2, 5], [3, 6]]  # Shape (3, 2)
   with self.test_session():
     matrix_ph = array_ops.placeholder(dtypes.int32)
     transposed = array_ops.matrix_transpose(matrix_ph)
     self.assertAllEqual(
         expected_transposed, transposed.eval(feed_dict={matrix_ph: matrix}))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:8,代码来源:array_ops_test.py


示例11: sign_magnitude_positive_definite

def sign_magnitude_positive_definite(
    raw, off_diagonal_scale=0., overall_scale=0.):
  """Constructs a positive definite matrix from an unconstrained input matrix.

  We want to keep the whole matrix on a log scale, but also allow off-diagonal
  elements to be negative, so the sign of off-diagonal elements is modeled
  separately from their magnitude (using the lower and upper triangles
  respectively). Specifically:

  for i < j, we have:
    output_cholesky[i, j] = raw[j, i] / (abs(raw[j, i]) + 1) *
        exp((off_diagonal_scale + overall_scale + raw[i, j]) / 2)

  output_cholesky[i, i] = exp((raw[i, i] + overall_scale) / 2)

  output = output_cholesky^T * output_cholesky

  where raw, off_diagonal_scale, and overall_scale are
  un-constrained real-valued variables. The resulting values are stable
  around zero due to the exponential (and the softsign keeps the function
  smooth).

  Args:
    raw: A [..., M, M] Tensor.
    off_diagonal_scale: A scalar or [...] shaped Tensor controlling the relative
        scale of off-diagonal values in the output matrix.
    overall_scale: A scalar or [...] shaped Tensor controlling the overall scale
        of the output matrix.
  Returns:
    The `output` matrix described above, a [..., M, M] positive definite matrix.

  """
  raw = ops.convert_to_tensor(raw)
  diagonal = array_ops.matrix_diag_part(raw)
  def _right_pad_with_ones(tensor, target_rank):
    # Allow broadcasting even if overall_scale and off_diagonal_scale have batch
    # dimensions
    tensor = ops.convert_to_tensor(tensor, dtype=raw.dtype.base_dtype)
    return array_ops.reshape(tensor,
                             array_ops.concat(
                                 [
                                     array_ops.shape(tensor), array_ops.ones(
                                         [target_rank - array_ops.rank(tensor)],
                                         dtype=target_rank.dtype)
                                 ],
                                 axis=0))
  # We divide the log values by 2 to compensate for the squaring that happens
  # when transforming Cholesky factors into positive definite matrices.
  sign_magnitude = (gen_math_ops.exp(
      (raw + _right_pad_with_ones(off_diagonal_scale, array_ops.rank(raw)) +
       _right_pad_with_ones(overall_scale, array_ops.rank(raw))) / 2.) *
                    nn.softsign(array_ops.matrix_transpose(raw)))
  sign_magnitude.set_shape(raw.get_shape())
  cholesky_factor = array_ops.matrix_set_diag(
      input=array_ops.matrix_band_part(sign_magnitude, 0, -1),
      diagonal=gen_math_ops.exp((diagonal + _right_pad_with_ones(
          overall_scale, array_ops.rank(diagonal))) / 2.))
  return math_ops.matmul(cholesky_factor, cholesky_factor, transpose_a=True)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:58,代码来源:math_utils.py


示例12: _GradWithInverseL

def _GradWithInverseL(l, l_inverse, grad):
  middle = math_ops.matmul(l, grad, adjoint_a=True)
  middle = array_ops.matrix_set_diag(middle,
                                     0.5 * array_ops.matrix_diag_part(middle))
  middle = array_ops.matrix_band_part(middle, -1, 0)
  grad_a = math_ops.matmul(
      math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse)
  grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a))
  return grad_a * 0.5
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:9,代码来源:cholesky_op_test.py


示例13: test_cholesky

  def test_cholesky(self):
    z = random_ops.random_normal([2, 3, 3])
    x = (math_ops.matmul(z, array_ops.matrix_transpose(z))  # Ensure pos. def.
         + linalg_ops.eye(3))  # Ensure well-conditioned.

    def loop_fn(i):
      return linalg_ops.cholesky(array_ops.gather(x, i))

    self._test_loop_fn(loop_fn, 2)
开发者ID:aritratony,项目名称:tensorflow,代码行数:9,代码来源:math_test.py


示例14: TriAngSolveCompositeGrad

def TriAngSolveCompositeGrad(l, grad):
  # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1}

  # Compute ((l^{H} @ grad) * (tril(ones)-1/2*eye)) = middle
  middle = math_ops.matmul(l, grad, adjoint_a=True)
  middle = array_ops.matrix_set_diag(middle,
                                     0.5 * array_ops.matrix_diag_part(middle))
  middle = array_ops.matrix_band_part(middle, -1, 0)

  # Compute l^{-H} @ middle = z
  l_inverse_middle = linalg_ops.matrix_triangular_solve(l, middle, adjoint=True)

  # We need to compute z @ l^{-1}. With matrix_triangular_solve we
  # actually compute l^{-H} @ z^{H} = grad. Since we later add grad^{H}
  # we can ommit the conjugate transpose here.
  z_h = math_ops.conj(array_ops.matrix_transpose(l_inverse_middle))
  grad_a = linalg_ops.matrix_triangular_solve(l, z_h, adjoint=True)
  grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a))
  return grad_a * 0.5
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:19,代码来源:cholesky_op_test.py


示例15: _tridiagonal_solve_compact_format

def _tridiagonal_solve_compact_format(diagonals,
                                      rhs,
                                      transpose_rhs=False,
                                      conjugate_rhs=False,
                                      name=None):
  """Helper function used after the input has been cast to compact form."""
  diags_rank, rhs_rank = len(diagonals.shape), len(rhs.shape)

  if diags_rank < 2:
    raise ValueError(
        'Expected diagonals to have rank at least 2, got {}'.format(diags_rank))
  if rhs_rank != diags_rank and rhs_rank != diags_rank - 1:
    raise ValueError('Expected the rank of rhs to be {} or {}, got {}'.format(
        diags_rank - 1, diags_rank, rhs_rank))
  if diagonals.shape[-2] != 3:
    raise ValueError('Expected 3 diagonals got {}'.format(diagonals.shape[-2]))
  if not diagonals.shape[:-2].is_compatible_with(rhs.shape[:diags_rank - 2]):
    raise ValueError('Batch shapes {} and {} are incompatible'.format(
        diagonals.shape[:-2], rhs.shape[:diags_rank - 2]))

  def check_num_lhs_matches_num_rhs():
    if diagonals.shape[-1] != rhs.shape[-2]:
      raise ValueError('Expected number of left-hand sided and right-hand '
                       'sides to be equal, got {} and {}'.format(
                           diagonals.shape[-1], rhs.shape[-2]))

  if rhs_rank == diags_rank - 1:
    # Rhs provided as a vector, ignoring transpose_rhs
    if conjugate_rhs:
      rhs = math_ops.conj(rhs)
    rhs = array_ops.expand_dims(rhs, -1)
    check_num_lhs_matches_num_rhs()
    return array_ops.squeeze(
        linalg_ops.tridiagonal_solve(diagonals, rhs, name), -1)

  if transpose_rhs:
    rhs = array_ops.matrix_transpose(rhs, conjugate=conjugate_rhs)
  elif conjugate_rhs:
    rhs = math_ops.conj(rhs)

  check_num_lhs_matches_num_rhs()
  result = linalg_ops.tridiagonal_solve(diagonals, rhs, name)
  return array_ops.matrix_transpose(result) if transpose_rhs else result
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:43,代码来源:linalg_impl.py


示例16: testBatchMatrix

 def testBatchMatrix(self):
   matrix_0 = [[1, 2, 3], [4, 5, 6]]
   matrix_0_t = [[1, 4], [2, 5], [3, 6]]
   matrix_1 = [[11, 22, 33], [44, 55, 66]]
   matrix_1_t = [[11, 44], [22, 55], [33, 66]]
   batch_matrix = [matrix_0, matrix_1]  # Shape (2, 2, 3)
   expected_transposed = [matrix_0_t, matrix_1_t]  # Shape (2, 3, 2)
   with self.test_session():
     transposed = array_ops.matrix_transpose(batch_matrix)
     self.assertEqual((2, 3, 2), transposed.get_shape())
     self.assertAllEqual(expected_transposed, transposed.eval())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:11,代码来源:array_ops_test.py


示例17: testBatchMatrixDynamicallyDefined

 def testBatchMatrixDynamicallyDefined(self):
   matrix_0 = [[1, 2, 3], [4, 5, 6]]
   matrix_0_t = [[1, 4], [2, 5], [3, 6]]
   matrix_1 = [[11, 22, 33], [44, 55, 66]]
   matrix_1_t = [[11, 44], [22, 55], [33, 66]]
   batch_matrix = [matrix_0, matrix_1]  # Shape (2, 2, 3)
   expected_transposed = [matrix_0_t, matrix_1_t]  # Shape (2, 3, 2)
   with self.test_session():
     batch_matrix_ph = array_ops.placeholder(dtypes.int32)
     transposed = array_ops.matrix_transpose(batch_matrix_ph)
     self.assertAllEqual(
         expected_transposed,
         transposed.eval(feed_dict={batch_matrix_ph: batch_matrix}))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:13,代码来源:array_ops_test.py


示例18: _stddev

 def _stddev(self):
   if (isinstance(self.scale, linalg.LinearOperatorIdentity) or
       isinstance(self.scale, linalg.LinearOperatorScaledIdentity) or
       isinstance(self.scale, linalg.LinearOperatorDiag)):
     return math_ops.abs(self.scale.diag_part())
   elif (isinstance(self.scale, linalg.LinearOperatorUDVHUpdate)
         and self.scale.is_self_adjoint):
     return math_ops.sqrt(array_ops.matrix_diag_part(
         self.scale.apply(self.scale.to_dense())))
   else:
     # TODO(b/35040238): Remove transpose once LinOp supports `transpose`.
     return math_ops.sqrt(array_ops.matrix_diag_part(
         self.scale.apply(array_ops.matrix_transpose(self.scale.to_dense()))))
开发者ID:jzuern,项目名称:tensorflow,代码行数:13,代码来源:mvn_linear_operator.py


示例19: test_real_hermitian_spectrum_gives_real_symmetric_operator

  def test_real_hermitian_spectrum_gives_real_symmetric_operator(self):
    with self.cached_session() as sess:
      # This is a real and hermitian spectrum.
      spectrum = [[1., 2., 2.], [3., 4., 4.], [3., 4., 4.]]
      operator = linalg.LinearOperatorCirculant(spectrum)

      matrix_tensor = operator.to_dense()
      self.assertEqual(matrix_tensor.dtype, dtypes.complex64)
      matrix_t = array_ops.matrix_transpose(matrix_tensor)
      imag_matrix = math_ops.imag(matrix_tensor)
      matrix, matrix_transpose, imag_matrix = sess.run(
          [matrix_tensor, matrix_t, imag_matrix])

      np.testing.assert_allclose(0, imag_matrix, atol=1e-6)
      self.assertAllClose(matrix, matrix_transpose, atol=0)
开发者ID:aritratony,项目名称:tensorflow,代码行数:15,代码来源:linear_operator_circulant_test.py


示例20: _updated_mat

  def _updated_mat(self, mat, v, diag):
    # Get dense matrix defined by its square root, which is an update of `mat`:
    # A = (mat + v D v^T) (mat + v D v^T)^T
    # D is the diagonal matrix with `diag` on the diagonal.

    # If diag is None, then it defaults to the identity matrix, so DV^T = V^T
    if diag is None:
      diag_vt = array_ops.matrix_transpose(v)
    else:
      diag_mat = array_ops.matrix_diag(diag)
      diag_vt = math_ops.matmul(diag_mat, v, adjoint_b=True)

    v_diag_vt = math_ops.matmul(v, diag_vt)
    sqrt = mat + v_diag_vt
    a = math_ops.matmul(sqrt, sqrt, adjoint_b=True)
    return a.eval()
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:16,代码来源:operator_pd_vdvt_update_test.py



注:本文中的tensorflow.python.ops.array_ops.matrix_transpose函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python array_ops.meshgrid函数代码示例发布时间:2022-05-27
下一篇:
Python array_ops.matrix_set_diag函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap