• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python array_ops.fill函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.array_ops.fill函数的典型用法代码示例。如果您正苦于以下问题:Python fill函数的具体用法?Python fill怎么用?Python fill使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fill函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testParallelAssignWithLocking

  def testParallelAssignWithLocking(self):
    with self.test_session() as sess:
      zeros_t = array_ops.fill([1024, 1024], 0.0)
      ones_t = array_ops.fill([1024, 1024], 1.0)
      p = variables.Variable(zeros_t)
      assigns = [
          state_ops.assign(
              p, math_ops.mul(ones_t, float(i)), use_locking=True)
          for i in range(1, 21)
      ]
      p.initializer.run()

      def run_assign(assign_op):
        sess.run(assign_op)

      threads = [
          self.checkedThread(
              target=run_assign, args=(assign_op,)) for assign_op in assigns
      ]
      for t in threads:
        t.start()
      for t in threads:
        t.join()

      vals = p.eval()

      # Assert every element is the same, and taken from one of the assignments.
      self.assertTrue(vals[0, 0] > 0)
      self.assertTrue(vals[0, 0] <= 20)
      self.assertAllEqual(vals, np.ones([1024, 1024]) * vals[0, 0])
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:30,代码来源:dense_update_ops_test.py


示例2: testParallelUpdateWithLocking

  def testParallelUpdateWithLocking(self):
    with self.test_session() as sess:
      zeros_t = array_ops.fill([1024, 1024], 0.0)
      ones_t = array_ops.fill([1024, 1024], 1.0)
      p = variables.Variable(zeros_t)
      adds = [
          state_ops.assign_add(
              p, ones_t, use_locking=True) for _ in range(20)
      ]
      p.initializer.run()

      def run_add(add_op):
        sess.run(add_op)

      threads = [
          self.checkedThread(
              target=run_add, args=(add_op,)) for add_op in adds
      ]
      for t in threads:
        t.start()
      for t in threads:
        t.join()

      vals = p.eval()
      ones = np.ones((1024, 1024)).astype(np.float32)
      self.assertAllEqual(vals, ones * 20)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:26,代码来源:dense_update_ops_test.py


示例3: _variance

    def _variance(self):
        var = self._ones() * math_ops.square(self.sigma) * self.df / (self.df - 2)
        # When 1 < df <= 2, variance is infinite.
        inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
        result_where_defined = math_ops.select(
            math_ops.greater(self.df, array_ops.fill(self.batch_shape(), 2.0)),
            var,
            array_ops.fill(self.batch_shape(), inf, name="inf"),
        )

        if self.allow_nan_stats:
            nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
            return math_ops.select(
                math_ops.greater(self.df, self._ones()),
                result_where_defined,
                array_ops.fill(self.batch_shape(), nan, name="nan"),
            )
        else:
            return control_flow_ops.with_dependencies(
                [
                    check_ops.assert_less(
                        array_ops.ones((), dtype=self.dtype),
                        self.df,
                        message="variance not defined for components of df <= 1",
                    )
                ],
                result_where_defined,
            )
开发者ID:apollos,项目名称:tensorflow,代码行数:28,代码来源:student_t.py


示例4: clip_by_value

def clip_by_value(t, clip_value_min, clip_value_max,
                  name=None):
  """Clips tensor values to a specified min and max.

  Given a tensor `t`, this operation returns a tensor of the same type and
  shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`.
  Any values less than `clip_value_min` are set to `clip_value_min`. Any values
  greater than `clip_value_max` are set to `clip_value_max`.

  Args:
    t: A `Tensor`.
    clip_value_min: A 0-D (scalar) `Tensor`. The minimum value to clip by.
    clip_value_max: A 0-D (scalar) `Tensor`. The maximum value to clip by.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.
  """
  with ops.op_scope([t, clip_value_min, clip_value_max], name,
                   "clip_by_value") as name:
    t = ops.convert_to_tensor(t, name="t")

    # Go through list of tensors, for each value in each tensor clip
    t_min = math_ops.minimum(
        t, array_ops.fill(array_ops.shape(t), clip_value_max))
    t_max = math_ops.maximum(
        t_min, array_ops.fill(array_ops.shape(t), clip_value_min),
        name=name)

  return t_max
开发者ID:niclar,项目名称:tensorflow,代码行数:30,代码来源:clip_ops.py


示例5: testParallelUpdateWithLocking

  def testParallelUpdateWithLocking(self):
    # We need each thread to keep its own device stack or the device scopes
    # won't be properly nested.
    ops.get_default_graph().switch_to_thread_local()
    with self.cached_session() as sess:
      zeros_t = array_ops.fill([1024, 1024], 0.0)
      ones_t = array_ops.fill([1024, 1024], 1.0)
      p = variables.Variable(zeros_t)
      adds = [
          state_ops.assign_add(
              p, ones_t, use_locking=True) for _ in range(20)
      ]
      self.evaluate(p.initializer)

      def run_add(add_op):
        self.evaluate(add_op)

      threads = [
          self.checkedThread(
              target=run_add, args=(add_op,)) for add_op in adds
      ]
      for t in threads:
        t.start()
      for t in threads:
        t.join()

      vals = self.evaluate(p)
      ones = np.ones((1024, 1024)).astype(np.float32)
      self.assertAllEqual(vals, ones * 20)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:29,代码来源:dense_update_ops_no_tsan_test.py


示例6: testParallelAssignWithLocking

  def testParallelAssignWithLocking(self):
    # We need each thread to keep its own device stack or the device scopes
    # won't be properly nested.
    ops.get_default_graph().switch_to_thread_local()
    with self.cached_session() as sess:
      zeros_t = array_ops.fill([1024, 1024], 0.0)
      ones_t = array_ops.fill([1024, 1024], 1.0)
      p = variables.Variable(zeros_t)
      assigns = [
          state_ops.assign(
              p, math_ops.multiply(ones_t, float(i)), use_locking=True)
          for i in range(1, 21)
      ]
      self.evaluate(p.initializer)

      def run_assign(assign_op):
        self.evaluate(assign_op)

      threads = [
          self.checkedThread(
              target=run_assign, args=(assign_op,)) for assign_op in assigns
      ]
      for t in threads:
        t.start()
      for t in threads:
        t.join()

      vals = self.evaluate(p)

      # Assert every element is the same, and taken from one of the assignments.
      self.assertTrue(vals[0, 0] > 0)
      self.assertTrue(vals[0, 0] <= 20)
      self.assertAllEqual(vals, np.ones([1024, 1024]) * vals[0, 0])
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:33,代码来源:dense_update_ops_no_tsan_test.py


示例7: _variance

  def _variance(self):
    # We need to put the tf.where inside the outer tf.where to ensure we never
    # hit a NaN in the gradient.
    denom = array_ops.where(math_ops.greater(self.df, 2.),
                            self.df - 2.,
                            array_ops.ones_like(self.df))
    # Abs(scale) superfluous.
    var = (array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype) *
           math_ops.square(self.scale) * self.df / denom)
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = array_ops.where(
        self.df > array_ops.fill(self.batch_shape_tensor(), 2.),
        var,
        array_ops.fill(self.batch_shape_tensor(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.greater(
              self.df,
              array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
          result_where_defined,
          array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              check_ops.assert_less(
                  array_ops.ones([], dtype=self.dtype),
                  self.df,
                  message="variance not defined for components of df <= 1"),
          ],
          result_where_defined)
开发者ID:daiwk,项目名称:tensorflow,代码行数:33,代码来源:student_t.py


示例8: _ConcatGrad

def _ConcatGrad(op, grad):
  """Gradient for concat op."""
  assert isinstance(grad, ops.Tensor)
  # Degenerate concatenation, just return grad.
  if len(op.inputs) == 2:
    return [None, grad]
  # Get the inputs' tensor shapes
  sizes = [array_ops.shape(x) for x in op.inputs[1:]]
  concat_dim = op.inputs[0]
  # Since shape is 1-D, shape_of_shape = [rank-of-inputs]
  shape_of_shape = array_ops.shape(sizes[0])
  # Make a vector of length equal to the input's dimensions,
  # with 0's everywhere and 1 in the concat dim position.
  # Note: Can't use sparse_to_dense since it isn't GPU-capable (for now)
  mask = array_ops.concat(0,
                          [array_ops.fill(
                              array_ops.expand_dims(concat_dim, 0), 0), [1],
                           array_ops.fill(shape_of_shape - concat_dim - 1, 0)])
  out_grads = []
  begin = array_ops.fill(shape_of_shape, 0)
  for i in range(len(sizes)):
    out_grads.append(array_ops.slice(grad, begin, sizes[i]))
    # Lint complains begin = begin + ...
    begin = math_ops.add(begin, sizes[i] * mask)
  return [None] + out_grads
开发者ID:adam-erickson,项目名称:tensorflow,代码行数:25,代码来源:array_grad.py


示例9: testShapeFunctionEdgeCases

  def testShapeFunctionEdgeCases(self):
    # Non-vector dimensions.
    with self.assertRaises(errors_impl.InvalidArgumentError):
      array_ops.fill([[0, 1], [2, 3]], 1.0)

    # Non-scalar value.
    with self.assertRaises(errors_impl.InvalidArgumentError):
      array_ops.fill([3, 2], [1.0, 2.0])
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:8,代码来源:constant_op_eager_test.py


示例10: _SegmentMeanGrad

def _SegmentMeanGrad(op, grad):
    """Gradient for SegmentMean."""
    input_rank = array_ops.rank(op.inputs[0])
    ones_shape = array_ops.concat(
        0, [array_ops.shape(op.inputs[1]), array_ops.fill(array_ops.expand_dims(input_rank - 1, 0), 1)]
    )
    ones = array_ops.fill(ones_shape, constant_op.constant(1, dtype=grad.dtype))
    scaled_grad = grad * math_ops.inv(math_ops.segment_sum(ones, op.inputs[1]))
    return array_ops.gather(scaled_grad, op.inputs[1]), None
开发者ID:ChanningPing,项目名称:tensorflow,代码行数:9,代码来源:math_grad.py


示例11: testFillNegative

  def testFillNegative(self):
    with self.test_session():
      for shape in (-1,), (2, -1), (-1, 2), (-2), (-3):
        with self.assertRaises(ValueError):
          array_ops.fill(shape, 7)

      # Using a placeholder so this won't be caught in static analysis.
      dims = array_ops.placeholder(dtypes_lib.int32)
      fill_t = array_ops.fill(dims, 3.0)
      for shape in (-1,), (2, -1), (-1, 2), (-2), (-3):
        with self.assertRaises(errors_impl.InvalidArgumentError):
          fill_t.eval({dims: shape})
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:12,代码来源:constant_op_test.py


示例12: _CreateDenseMaskAndBegin

 def _CreateDenseMaskAndBegin(sizes, concat_dim):
   """Create variables for iteratively slicing a dense gradients tensor."""
   # Since shape is 1-D, shape_of_shape = [rank-of-inputs]
   shape_of_shape = array_ops.shape(sizes[0])
   # Make a vector of length equal to the input's dimensions,
   # with 0's everywhere and 1 in the concat dim position.
   # Note: Can't use sparse_to_dense since it isn't GPU-capable (for now)
   mask = array_ops.concat([
       array_ops.fill(array_ops.expand_dims(concat_dim, 0), 0), [1],
       array_ops.fill(shape_of_shape - concat_dim - 1, 0)
   ], 0)
   begin = array_ops.fill(shape_of_shape, 0)
   return mask, begin
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:13,代码来源:array_grad.py


示例13: testAssignNonStrictShapeChecking

  def testAssignNonStrictShapeChecking(self):
    with self.cached_session():
      data = array_ops.fill([1024, 1024], 0)
      p = variables.VariableV1([1])
      a = state_ops.assign(p, data, validate_shape=False)
      a.op.run()
      self.assertAllEqual(p.eval(), data.eval())

      # Assign to yet another shape
      data2 = array_ops.fill([10, 10], 1)
      a2 = state_ops.assign(p, data2, validate_shape=False)
      a2.op.run()
      self.assertAllEqual(p.eval(), data2.eval())
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:13,代码来源:dense_update_ops_test.py


示例14: testDtype

 def testDtype(self):
   with self.test_session():
     d = array_ops.fill([2, 3], 12., name="fill")
     self.assertEqual(d.get_shape(), [2, 3])
     # Test default type for both constant size and dynamic size
     z = array_ops.zeros([2, 3])
     self.assertEqual(z.dtype, dtypes_lib.float32)
     self.assertEqual([2, 3], z.get_shape())
     self.assertAllEqual(z.eval(), np.zeros([2, 3]))
     z = array_ops.zeros(array_ops.shape(d))
     self.assertEqual(z.dtype, dtypes_lib.float32)
     self.assertEqual([2, 3], z.get_shape())
     self.assertAllEqual(z.eval(), np.zeros([2, 3]))
     # Test explicit type control
     for dtype in [
         dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.int32,
         dtypes_lib.uint8, dtypes_lib.int16, dtypes_lib.int8,
         dtypes_lib.complex64, dtypes_lib.complex128, dtypes_lib.int64,
         dtypes_lib.bool, dtypes_lib.string
     ]:
       z = array_ops.zeros([2, 3], dtype=dtype)
       self.assertEqual(z.dtype, dtype)
       self.assertEqual([2, 3], z.get_shape())
       z_value = z.eval()
       self.assertFalse(np.any(z_value))
       self.assertEqual((2, 3), z_value.shape)
       z = array_ops.zeros(array_ops.shape(d), dtype=dtype)
       self.assertEqual(z.dtype, dtype)
       self.assertEqual([2, 3], z.get_shape())
       z_value = z.eval()
       self.assertFalse(np.any(z_value))
       self.assertEqual((2, 3), z_value.shape)
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:32,代码来源:constant_op_test.py


示例15: testLargeFetch

 def testLargeFetch(self):
   server = self._cached_server
   with session.Session(server.target, config=self._useRPCConfig()) as sess:
     c = array_ops.fill([10000, 3000], 0.5)
     expected_val = np.empty([10000, 3000], dtype=np.float32)
     expected_val.fill(0.5)
     self.assertAllEqual(expected_val, sess.run(c))
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:7,代码来源:server_lib_test.py


示例16: testConsumeWindowDatasetMoreThanOnce

  def testConsumeWindowDatasetMoreThanOnce(self):
    components = np.random.randint(50, size=(200,)).astype(np.int64)

    def reduce_func(key, window):
      # Apply two different kinds of padding to the input: tight
      # padding, and quantized (to a multiple of 10) padding.
      return dataset_ops.Dataset.zip((window.padded_batch(
          4,
          padded_shapes=tensor_shape.TensorShape([None])), window.padded_batch(
              4, padded_shapes=ops.convert_to_tensor([(key + 1) * 10])),))

    iterator = dataset_ops.Iterator.from_dataset(
        dataset_ops.Dataset.from_tensor_slices(components)
        .map(lambda x: array_ops.fill([math_ops.cast(x, dtypes.int32)], x))
        .group_by_window(
            lambda x: math_ops.cast(array_ops.shape(x)[0] // 10, dtypes.int64),
            reduce_func, 4))
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.test_session() as sess:
      sess.run(init_op)
      counts = []
      with self.assertRaises(errors.OutOfRangeError):
        while True:
          tight_result, multiple_of_10_result = sess.run(get_next)
          self.assertEqual(0, multiple_of_10_result.shape[1] % 10)
          self.assertAllEqual(tight_result,
                              multiple_of_10_result[:, :tight_result.shape[1]])
          counts.append(tight_result.shape[0])
      self.assertEqual(len(components), sum(counts))
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:31,代码来源:bucketing_test.py


示例17: testParallelAssignWithoutLocking

  def testParallelAssignWithoutLocking(self):
    # We need each thread to keep its own device stack or the device scopes
    # won't be properly nested.
    ops.get_default_graph().switch_to_thread_local()
    with self.cached_session() as sess:
      ones_t = array_ops.fill([1024, 1024], float(1))
      p = variables.Variable(array_ops.zeros([1024, 1024]))
      assigns = [
          state_ops.assign(p, math_ops.multiply(ones_t, float(i)), False)
          for i in range(1, 21)
      ]
      self.evaluate(variables.global_variables_initializer())

      def run_assign(assign_op):
        self.evaluate(assign_op)

      threads = [
          self.checkedThread(
              target=run_assign, args=(assign_op,)) for assign_op in assigns
      ]
      for t in threads:
        t.start()
      for t in threads:
        t.join()

      vals = self.evaluate(p)

      # Assert every element is taken from one of the assignments.
      self.assertTrue((vals > 0).all())
      self.assertTrue((vals <= 20).all())
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:30,代码来源:dense_update_ops_no_tsan_test.py


示例18: _unbounded_exponential_log_prob

 def _unbounded_exponential_log_prob(x):
   """An exponential distribution with log-likelihood NaN for x < 0."""
   per_element_potentials = array_ops.where(
       x < 0.,
       array_ops.fill(array_ops.shape(x), x.dtype.as_numpy_dtype(np.nan)),
       -x)
   return math_ops.reduce_sum(per_element_potentials)
开发者ID:ClowJ,项目名称:tensorflow,代码行数:7,代码来源:hmc_test.py


示例19: _DefaultGradYs

def _DefaultGradYs(grad_ys, ys, colocate_gradients_with_ops):
  """Fill in default values for grad_ys.

  Args:
    grad_ys: List of gradients, can contain None.
    ys: List of tensors.
    colocate_gradients_with_ops: If True, try colocating gradients with
      the corresponding op.

  Returns:
    A list of gradients to use, without None.

  Raises:
    ValueError: If one of the grad_ys is invalid.
  """
  if len(grad_ys) != len(ys):
    raise ValueError("Passed %d grad_ys for %d ys" % (len(grad_ys), len(ys)))
  grad_ys = ops.convert_n_to_tensor_or_indexed_slices(grad_ys, name="grad_y")
  for i in xrange(len(grad_ys)):
    grad_y = grad_ys[i]
    y = ys[i]
    if grad_y is None:
      with _maybe_colocate_with(y.op, colocate_gradients_with_ops):
        grad_ys[i] = array_ops.fill(
            array_ops.shape(y), constant_op.constant(
                1, dtype=y.dtype))
    else:
      if grad_y.dtype != y.dtype:
        raise ValueError("Y and ys_grad must be of the same type, "
                         "not y: %s, ys_grad: %s " %
                         (dtypes.as_dtype(y.dtype).name,
                          dtypes.as_dtype(grad_y.dtype).name))
  return grad_ys
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:33,代码来源:gradients_impl.py


示例20: _writeDummySavedModel

  def _writeDummySavedModel(self, path, feature_name):
    """Writes a classifier with two input features to the given path."""
    with ops.Graph().as_default():
      examples = array_ops.placeholder(dtypes.string, name="input_node")
      feature_configs = {
          feature_name: parsing_ops.FixedLenFeature(shape=[],
                                                    dtype=dtypes.float32),
      }
      features = parsing_ops.parse_example(examples, feature_configs)
      feature = features[feature_name]

      variable_node = variables.VariableV1(1.0, name="variable_node")
      scores = math_ops.multiply(variable_node, feature, name="output_node")
      class_feature = array_ops.fill(array_ops.shape(feature),
                                     "class_%s" % feature_name)
      classes = array_ops.transpose(class_feature)

      with session.Session() as sess:
        sess.run(variables.global_variables_initializer())
        signature = (
            signature_def_utils.classification_signature_def(
                examples=examples,
                classes=classes,
                scores=scores,))
        builder = saved_model_builder.SavedModelBuilder(path)
        builder.add_meta_graph_and_variables(
            sess,
            [tag_constants.SERVING],
            signature_def_map={
                signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                    signature,
            },)
        builder.save(as_text=True)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:33,代码来源:freeze_graph_test.py



注:本文中的tensorflow.python.ops.array_ops.fill函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python array_ops.gather函数代码示例发布时间:2022-05-27
下一篇:
Python array_ops.expand_dims函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap